www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Ebene
Ebene < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:54 Do 17.09.2009
Autor: frankk

Aufgabe
[Dateianhang nicht öffentlich]

Hi,

obiges Bild mit der Diskriminanz-Funktion $k(m) = [mm] \vec w^T\vec [/mm] m + b$.
Wie erkenne ich jetzt wo die Ebene liegt? Mir ist nicht klar, woran ich erkenne ob die Ebene im positiven Bereich oder im negativen Bereich liegt.
Ist das durch $b$ den Abstand (ein Abstand ist ja immer positiv, also für $-(+b)$: Ebene oberhalb des Ursprungs und für $+(+b)$: Ebene unterhalb des Ursprungs?) oder durch den Normalenvektor $w$ festgelegt?

Mfg

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Ebene: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:50 Fr 18.09.2009
Autor: frankk

Aufgabe
... und wieso erhalte ich erst dann einen vorzeichenbehafteten Abstand, wenn ich durch die Norm von $w$ teile?

weiss das vllt jemand?

Bezug
                
Bezug
Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 13:59 Mo 21.09.2009
Autor: angela.h.b.


> ... und wieso erhalte ich erst dann einen
> vorzeichenbehafteten Abstand, wenn ich durch die Norm von [mm]w[/mm]
> teile?
>  weiss das vllt jemand?

Hallo,

ich bin mir nicht sicher, ob ich die Frage richtig verstehe.

Bei der Hessenormalform richtet man es immer so ein, daß man als Normalenvektor den nimmt, der vom Ursprung auf die Ebene weist.

Lautet die Ebenengleichung

[mm] \vektor{3\\-4\\0}*{x} [/mm] +7=0,

so normiere ich und multipliziere mit -1 und erhalte: [mm] \vektor{3/5\\-4/5\\0}*{x} [/mm] -7/5=0.

Hiermit weiß ich: meine Ebene ist senkrecht zu [mm] \vektor{3/5\\-4/5\\0}, [/mm] und wenn ich vom Ursprung aus 7/5 Einheiten in Richtung [mm] \vektor{3/5\\-4/5\\0} [/mm] gehe, treffe ich auf die Ebene.

Gruß v. Angela

Bezug
        
Bezug
Ebene: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:35 Mo 21.09.2009
Autor: frankk

Fehlen Euch Informationen?

Bezug
        
Bezug
Ebene: Antwort
Status: (Antwort) fertig Status 
Datum: 13:53 Mo 21.09.2009
Autor: angela.h.b.


> [Dateianhang nicht öffentlich]
>  Hi,
>
> obiges Bild mit der Diskriminanz-Funktion [mm]k(m) = \vec w^T\vec m + b[/mm].
> Wie erkenne ich jetzt wo die Ebene liegt? Mir ist nicht
> klar, woran ich erkenne ob die Ebene im positiven Bereich
> oder im negativen Bereich liegt.

Hallo,

was soll "im positiven Bereich"  für die Ebene bedeuten?

Wenn ich das, was Du oben schreibst und die Zeichnung richtig deute, gibt Deine Funktion f  je nach Vorzeichen des Funktionswertes an, ob der Punkt mit Ortsvektor [mm] \vec{m} [/mm] auf derselben Seite der Ebene mit der Gleichung [mm] 0=\vec{w}*\vec{x}-b [/mm] liegt wie der Nullpunkt [mm] (f(\vec{m}) [/mm] negativ), oder auf der anderen [mm] (f(\vec{m}) [/mm] positiv).

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de