www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Längen, Abstände, Winkel" - Ebene, Winkel, Länge
Ebene, Winkel, Länge < Längen+Abst.+Winkel < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebene, Winkel, Länge: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 12:39 Di 26.02.2008
Autor: Chrissi21

Aufgabe
Gegeben seien vier Punkte im [mm] \IR^3 [/mm] :
A: [mm] \vec{a}=\begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}; [/mm]
B: [mm] \vec{b}=\begin{pmatrix} 0 \\ -4 \\ 9 \end{pmatrix}; [/mm]
C: [mm] \vec{c}=\begin{pmatrix} 6 \\ 2 \\ -1 \end{pmatrix}; [/mm]
D: [mm] \vec{d}=\begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix}; [/mm]

a) Zeigen Sie, dass die vier Punkte A, B, C und D nicht in einer Ebene liegen.
b) Wie groß ist der Winkel, unter dem sich die Geraden AB und BC schneiden?
c) Berechnen Sie die Länge der kürzesten aller möglichen Verbindungsstrecken der vier Punkte.

Hi, ich hab irgendwie keine genau Vorstellung, was ich da machen soll, vieleicht könnte es mir jemand erklären, wär echt super!

Zu a) keine Ahnung, wie ich da vorgehen soll!!!
Zu b)
AB= [mm] \begin{Bmatrix} \vec x / \vec x =\begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} +r* \begin{pmatrix} 0 \\ -4 \\ 9 \end{pmatrix} \end{Bmatrix} [/mm]
BC= [mm] \begin{Bmatrix} \vec x / \vec x =\begin{pmatrix} 0 \\ -4 \\ 9 \end{pmatrix} +s* \begin{pmatrix} 6 \\ 2 \\ -1 \end{pmatrix} \end{Bmatrix} [/mm]

[mm] \vec b_1 [/mm] = [mm] \begin{pmatrix} 0 \\ -4 \\ 9 \end{pmatrix} [/mm]
und
[mm] \vec b_2 [/mm] = [mm] \begin{pmatrix} 6 \\ 2 \\ -1 \end{pmatrix} [/mm]

[mm] \vec b_1 [/mm] * [mm] \vec b_2 [/mm] = -17

[mm] \begin{vmatrix} b_1 & b_2 \\ \end{vmatrix} [/mm] = [mm] \wurzel{97} [/mm] * [mm] \wurzel{41} [/mm]
[mm] \cos \alpha [/mm] = 105,64°

Ob das stimmt glaube ich nicht wirklich, es ist nur als Versuch anzusehen!!!

zu c)
Wie a), ich weiß einfach nicht, wie ich da vorgehen soll.





        
Bezug
Ebene, Winkel, Länge: Aufgabe a.)
Status: (Antwort) fertig Status 
Datum: 12:43 Di 26.02.2008
Autor: Roadrunner

Hallo Chrissi!


Ermittle aus 3 der 4 Punkten eine Ebenengleichung und setze anschließend die Koordinaten des 4. Punktes in diese Ebenengleichung ein.


Gruß vom
Roadrunner


Bezug
        
Bezug
Ebene, Winkel, Länge: Aufgabe b.)
Status: (Antwort) fertig Status 
Datum: 12:47 Di 26.02.2008
Autor: Roadrunner

Hallo Chrissi!


Wie hast Du denn die Richtungsvektoren der beiden Geraden ermittelt?

Denn diese sind hier leider falsch. Es gilt:

[mm] $$\overrightarrow{AB} [/mm] \ = \ [mm] \vec{b}-\vec{a} [/mm] \ = \ [mm] \vektor{0\\-4\\9}-\vektor{4\\0\\1} [/mm] \ = \ ...$$
[mm] $$\overrightarrow{BC} [/mm] \ = \ [mm] \vec{c}-\vec{b} [/mm] \ = \ [mm] \vektor{6\\2\\-1}-\vektor{0\\-4\\9} [/mm] \ = \ ...$$

Gruß vom
Roadrunner


Bezug
        
Bezug
Ebene, Winkel, Länge: Aufgabe c.)
Status: (Antwort) fertig Status 
Datum: 12:53 Di 26.02.2008
Autor: Roadrunner

Hallo Chrissi!


Bestimme für alle möglichen Punktverbindungen jeweils den Abstand.

Beispiel für [mm] $\overrightarrow{AB}$ [/mm] :

$$d(AB) \ = \ [mm] \left|\overrightarrow{AB}\right| [/mm] \ = \ [mm] \left|\vektor{0\\-4\\9}-\vektor{4\\0\\1}\right| [/mm] \ = \ [mm] \left|\vektor{-4\\-4\\8}\right| [/mm] \ = \ [mm] \wurzel{(-4)^2+(-4)^2+8^2} [/mm] \ = \ [mm] \wurzel{96} [/mm] \ = \ [mm] 4*\wurzel{6} [/mm] \ [mm] \approx [/mm] \ 9.80$$

Gruß vom
Roadrunner


Bezug
                
Bezug
Ebene, Winkel, Länge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 Di 26.02.2008
Autor: Chrissi21

Also für a) hab ich´s jetzt so versucht:
[mm] E:x=\begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} +s*\begin{pmatrix} 4 \\ 4 \\ -8 \end{pmatrix} +t*\begin{pmatrix} -2 \\ -2 \\ 2 \end{pmatrix} [/mm]

[mm] \begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} +s*\begin{pmatrix} 4 \\ 4 \\ -8 \end{pmatrix} +t*\begin{pmatrix} -2 \\ -2 \\ 2 \end{pmatrix} [/mm] = [mm] \begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix} [/mm]

Irgendwie kommt bei mir für s=1 und für t=3 raus, dass glaube ich stimmt aber nicht, also hab ich irgendwas falsch gemacht, ich weiß nur noch nicht was!?!

zu b)
[mm] \vec{AB} [/mm] = [mm] \begin{pmatrix} -4 \\ -4 \\ 8 \end{pmatrix} [/mm]
[mm] \vec{BC} [/mm] = [mm] \begin{pmatrix} 6 \\ 6 \\ -10 \end{pmatrix} [/mm]

[mm] \vec {b_1} [/mm] = [mm] \begin{pmatrix} -4 \\ -4 \\ 8 \end{pmatrix} [/mm]
[mm] \vec {b_2} [/mm] = [mm] \begin{pmatrix} 6 \\ 6 \\ -10 \end{pmatrix} [/mm]

[mm] \begin{vmatrix} b_1 & b_2 \\ \end{vmatrix} [/mm] = -128
[mm] \cos \alpha [/mm] = -128 / [mm] \wurzel{32} [/mm] * [mm] \wurzel{172} [/mm]
Geht aber nicht! Richtig so oder??

zu c)
[mm] \vec{AB} [/mm] = [mm] \begin{pmatrix} -4 \\ -4 \\ 8 \end{pmatrix} =\wurzel{(-4)^2+(-4)^2+8^2} =\wurzel{96} [/mm] = 9,80
[mm] \vec{BC} [/mm] = [mm] \begin{pmatrix} 6 \\ 6 \\ -10 \end{pmatrix} =\wurzel{6^2+6^2+(-10)^2} =\wurzel{172} [/mm] = 13,11
[mm] \vec{CD} [/mm] = [mm] \begin{pmatrix} -4 \\ 4 \\ 0 \end{pmatrix} =\wurzel{(-4)^2+4^2} [/mm] =0
[mm] \vec{DA} [/mm] = [mm] \begin{pmatrix} 2 \\ -6 \\ 2 \end{pmatrix} =\wurzel{2^2+(-6)^2+2^2} =\wurzel{44} [/mm] = 6,63




Bezug
                        
Bezug
Ebene, Winkel, Länge: Antwort
Status: (Antwort) fertig Status 
Datum: 08:13 Mi 27.02.2008
Autor: Sigrid

Hallo Chrissi,

> Also für a) hab ich´s jetzt so versucht:
>  [mm]E:x=\begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} +s*\begin{pmatrix} 4 \\ 4 \\ -8 \end{pmatrix} +t*\begin{pmatrix} -2 \\ -2 \\ 2 \end{pmatrix}[/mm]
>  
> [mm]\begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix} +s*\begin{pmatrix} 4 \\ 4 \\ -8 \end{pmatrix} +t*\begin{pmatrix} -2 \\ -2 \\ 2 \end{pmatrix}[/mm]
> = [mm]\begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix}[/mm]
>  
> Irgendwie kommt bei mir für s=1 und für t=3 raus, dass
> glaube ich stimmt aber nicht, also hab ich irgendwas falsch
> gemacht, ich weiß nur noch nicht was!?!

Ich denke, Du hast vergessen, die dritte Gleichung zu überprüfen. Um s und t zu berechnen, brauchst du ja nur 2 Gleichungen. Du musst dann noch die gefundenen Werte in die 3. Gleichung einsetzen, um zu sehen, ob auch diese erfüllt ist.

>  
> zu b)
>  [mm]\vec{AB}[/mm] = [mm]\begin{pmatrix} -4 \\ -4 \\ 8 \end{pmatrix}[/mm]
>  
> [mm]\vec{BC}[/mm] = [mm]\begin{pmatrix} 6 \\ 6 \\ -10 \end{pmatrix}[/mm]
>  
> [mm]\vec {b_1}[/mm] = [mm]\begin{pmatrix} -4 \\ -4 \\ 8 \end{pmatrix}[/mm]
>  
> [mm]\vec {b_2}[/mm] = [mm]\begin{pmatrix} 6 \\ 6 \\ -10 \end{pmatrix}[/mm]
>  
> [mm]\begin{vmatrix} b_1 & b_2 \\ \end{vmatrix}[/mm] = -128
>   [mm]\cos \alpha[/mm] = -128 / [mm]\wurzel{32}[/mm] * [mm]\wurzel{172}[/mm]
>  Geht aber nicht! Richtig so oder??

Bei der Berechnung der Länge von $ [mm] \vec{b_1} [/mm] $ hast du dich verrechnet. Achte bitte auch darauf, dass man immer den spitzen winkel als Winkel zwischen zwei Geraden nimmt.

>  
> zu c)
>  [mm]\vec{AB}[/mm] = [mm]\begin{pmatrix} -4 \\ -4 \\ 8 \end{pmatrix} =\wurzel{(-4)^2+(-4)^2+8^2} =\wurzel{96}[/mm]
> = 9,80
>  [mm]\vec{BC}[/mm] = [mm]\begin{pmatrix} 6 \\ 6 \\ -10 \end{pmatrix} =\wurzel{6^2+6^2+(-10)^2} =\wurzel{172}[/mm]
> = 13,11
>  [mm]\vec{CD}[/mm] = [mm]\begin{pmatrix} -4 \\ 4 \\ 0 \end{pmatrix} =\wurzel{(-4)^2+4^2}[/mm]
> =0

Das kann nicht stimmen, da nur der Nullvektor die Länge 0 hat. Es gilt doch $ [mm] (-4)^2 [/mm] + [mm] 4^2 [/mm] = 16 + 16 = 32 $

>  [mm]\vec{DA}[/mm] = [mm]\begin{pmatrix} 2 \\ -6 \\ 2 \end{pmatrix} =\wurzel{2^2+(-6)^2+2^2} =\wurzel{44}[/mm]
> = 6,63

Überprüfe auch bitte noch einmal deine Vektoren. Da stecken noch Vorzeichenfehler drin, die auf das Ergebnis keinen Einfluss haben. Außerdem musst du noch die Schreibweise korrigieren. Du darfst zwischen einem Vektor und seiner Länge kein Gleichheitszeichen setzen.

Gruß
Sigrid


>  
>
>  


Bezug
                                
Bezug
Ebene, Winkel, Länge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:27 Do 28.02.2008
Autor: Chrissi21

zu a) egal, was ich bis jetzt für s oder t rausbekommen hatte, es ließ sich nicht für die 3. Gleichung einsetzen.

Es war ja:
4+4s-2t=2
4s-2t=6
1-8s+2t=-1

bei der 1. und 2. Gleichung bekomme ich nichts raus, 2. und 3 Gleichung s=-1 und t=-5, passt nicht in die 1. Gleichung. 1. und 3. Gleichung s=1 und t=3. Wo ist denn jetzt das Problem, sind meine Gleichungen falsch oder rechne ich falsch???

zu b)
war ja:

> > zu b)
>  >  [mm]\vec{AB}[/mm] = [mm]\begin{pmatrix} -4 \\ -4 \\ 8 \end{pmatrix}[/mm]
>  
> >  

> > [mm]\vec{BC}[/mm] = [mm]\begin{pmatrix} 6 \\ 6 \\ -10 \end{pmatrix}[/mm]
>  >

>  
> > [mm]\vec {b_1}[/mm] = [mm]\begin{pmatrix} -4 \\ -4 \\ 8 \end{pmatrix}[/mm]
>  
> >  

> > [mm]\vec {b_2}[/mm] = [mm]\begin{pmatrix} 6 \\ 6 \\ -10 \end{pmatrix}[/mm]
>  
> >  

> > [mm]\begin{vmatrix} b_1 & b_2 \\ \end{vmatrix}[/mm] = -128
>  >   [mm]\cos \alpha[/mm] = -128 / [mm]\wurzel{32}[/mm] * [mm]\wurzel{172}[/mm]
>  >  Geht aber nicht! Richtig so oder??
>  
> Bei der Berechnung der Länge von [mm]\vec{b_1}[/mm] hast du dich
> verrechnet. Achte bitte auch darauf, dass man immer den
> spitzen winkel als Winkel zwischen zwei Geraden nimmt.

wüsste ich jetzt nicht, was daran falsch sein sollte, hab ich genauso wie die anderen gemacht!?
zu c)

>  >  [mm]\vec{CD}[/mm] = [mm]\begin{pmatrix} -4 \\ 4 \\ 0 \end{pmatrix} =\wurzel{(-4)^2+4^2}[/mm]
> > =0
>  
> Das kann nicht stimmen, da nur der Nullvektor die Länge 0
> hat. Es gilt doch [mm](-4)^2 + 4^2 = 16 + 16 = 32[/mm]

Ok, hab ich verstanden, falsch gerechnet. Ergebnis 5,657.

>  
> Überprüfe auch bitte noch einmal deine Vektoren. Da stecken
> noch Vorzeichenfehler drin, die auf das Ergebnis keinen
> Einfluss haben.

Die hab ich nicht gefunden. Soll ich die vorgegeben Vorzeichen ignorieren oder ???

Fällt mir irgendwie sehr schwer dieses Thema, sorry!!!!





Bezug
                                        
Bezug
Ebene, Winkel, Länge: Aufg. a
Status: (Antwort) fertig Status 
Datum: 21:34 Do 28.02.2008
Autor: informix

Hallo Chrissi21,

> zu a) egal, was ich bis jetzt für s oder t rausbekommen
> hatte, es ließ sich nicht für die 3. Gleichung einsetzen.
>  
> Es war ja:
>  4+4s-2t=2
>  4s-2t=6
>  1-8s+2t=-1
>  
> bei der 1. und 2. Gleichung bekomme ich nichts raus, 2. und
> 3 Gleichung s=-1 und t=-5, passt nicht in die 1. Gleichung.
> 1. und 3. Gleichung s=1 und t=3. Wo ist denn jetzt das
> Problem, sind meine Gleichungen falsch oder rechne ich
> falsch???
>  

Warum hältst du dich nicht an die Anweisungen von Roadrunner?
A: $ [mm] \vec{a}=\begin{pmatrix} 4 \\ 0 \\ 1 \end{pmatrix}; [/mm] $
B: $ [mm] \vec{b}=\begin{pmatrix} 0 \\ -4 \\ 9 \end{pmatrix}; [/mm] $
C: $ [mm] \vec{c}=\begin{pmatrix} 6 \\ 2 \\ -1 \end{pmatrix}; [/mm] $
D: $ [mm] \vec{d}=\begin{pmatrix} 2 \\ 6 \\ -1 \end{pmatrix}; [/mm] $

Ebene(A,B,C): [mm] \vec{x}=\vec{a}+r(\vec{b}-\vec{a})+s(\vec{c}-\vec{a}) [/mm]
...
in diese Ebenengleichung setzt du nun [mm] \vec{d}=Ebene(A,B,C) [/mm] ein und prüfst ob es eine eindeutige Lösung für r und s gibt, du musst also ein Gleichungssystem lösen.
Hat es eine Lösung, liegt D auf der Ebene, sonst nicht. Letzteres sollst du aber zeigen!


Gruß informix

Bezug
                                                
Bezug
Ebene, Winkel, Länge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:54 Do 28.02.2008
Autor: Chrissi21

Alles klar, mein LGS lautet:
4-4r+2s=2
0+4r+4s=6
1-8r-2s=-1
und da ich kein eindeutiges Ergebnis für r und s bekomme, stimmt das, was ich gemacht hab. ok, vielen dank dafür!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Längen, Abstände, Winkel"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de