www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Ebene und Gerade
Ebene und Gerade < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebene und Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:20 Do 29.09.2011
Autor: zitrone

Guten Abend,

ich hab da ein kleines Problem:
Bei meiner Aufgabenstellung heißt es "Ermitteln Sie die Koordinaten derjenigen Punkte auf g, deren Abstand von der Ebene 5 beträgt.

Wie geht man an sowas ran? Ich weiß, wie ich den Abstand berechne...aber den Abstand hab ich ja schon gegeben und nun muss ich auf die Koordinaten kommen...

Bringt mir die Aufstellung der Koordinatendarstellung was?

Könnte mir bitte jemand eine Tipp oder eine Erlärung geben??:/
lg zitrone

        
Bezug
Ebene und Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 23:25 Do 29.09.2011
Autor: kushkush

Hallo,


> Ich weiß, wie ich den Abstand berechne...


mach das und setze den Ausdruck den du erhältst gleich dem gegebenen Abstand.



Gruss
kushkush

Bezug
                
Bezug
Ebene und Gerade: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:27 Do 29.09.2011
Autor: zitrone

super, danke!

Bezug
                
Bezug
Ebene und Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:49 Do 29.09.2011
Autor: zitrone

Guten Abend noch einmal!

Ich habs nun gemacht, aber irgendwie komm ich nicht weiter.

Also was ich aufgestellt habe, sieht wie folgt aus:

[mm] \bruch{2x+y+2z+20}{3} [/mm] = 5

Ich hab 3 Unbekannte, aber nur eine Gleichung...Wie geht man da ran??://

LG zitrone

Bezug
                        
Bezug
Ebene und Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 23:54 Do 29.09.2011
Autor: reverend

Hallo zitrone,

die Aufgabe macht nur Sinn, wenn die Gerade die Ebene schneidet, also weder in der Ebene noch parallel zu einer Geraden in der Ebene liegt. Dann aber gibt es genau zwei Punkte, die die Bedingung erfüllen.

> Also was ich aufgestellt habe, sieht wie folgt aus:
>  
> [mm]\bruch{2x+y+2z+20}{3}[/mm] = 5
>  
> Ich hab 3 Unbekannte, aber nur eine Gleichung...Wie geht
> man da ran??://

Gar nicht. Das ist eine Ebenengleichung. Wo ist die Gerade?

Vielleicht postest Du doch mal die ganzen Informationen der Aufgabe.

Grüße
reverend


Bezug
                                
Bezug
Ebene und Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:11 Fr 30.09.2011
Autor: zitrone

Guten Abend reverend!


Also die Gerade lautet g: [mm] \vec{x}=\vektor{11 \\ -7 \\5}+k\vektor{3 \\ -1 \\ 5} [/mm]

Ebene E: 2x+y+2z+20=0

Aufgabe a:
Zeigen sie, dass g die Ebene schneidet und bestimmen sie die Koordinaten des Schnittpunktes.


Da hab ich einfach die einzelnen Punkte von g(also (11+3k)(-7-k)(5+5k)) genommen und in E eingesetzt.
Mein Ergebnis ist -3. Diese -3 hab ich für k in die Gerade eingesetzt und hatte dann die Punkte (2|-4|-10) .

Aufgabe b ging ja dann um den Abstand.
Nur , wie gesagt, ich komm nicht weiter...

LG zitrone

Bezug
                                        
Bezug
Ebene und Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 00:16 Fr 30.09.2011
Autor: reverend

Hallo nochmal,

danke für die Daten. ;-)

> Also die Gerade lautet g: [mm]\vec{x}=\vektor{11 \\ -7 \\ 5}+k\vektor{3 \\ -1 \\ 5}[/mm]
>  
> Ebene E: 2x+y+2z+20=0
>  
> Aufgabe a:
>  Zeigen sie, dass g die Ebene schneidet und bestimmen sie
> die Koordinaten des Schnittpunktes.
>  
>
> Da hab ich einfach die einzelnen Punkte von g(also
> (11+3k)(-7-k)(5+5k)) genommen und in E eingesetzt.
>  Mein Ergebnis ist -3. Diese -3 hab ich für k in die
> Gerade eingesetzt und hatte dann die Punkte (2|-4|-10) .

Wieso Plural? Es ist doch nur einer, und ganz richtig bestimmt.

> Aufgabe b ging ja dann um den Abstand.
>  Nur , wie gesagt, ich komm nicht weiter...

Ich frage mich, wie Du da auf die Gleichung von vorhin gekommen bist.
Du könntest die Darstellung der Ebene in eine Hessesche Normalform umwandeln, dann kannst Du den Abstand eines beliebigen Punktes leicht ablesen. Wenn Du darein eben einen beliebigen Punkt der Gerade (also noch parameterbehaftet) einsetzt, bekommst Du Deine zwei Lösungen recht einfach.

Wie ist denn die []HNF Deiner Ebene? Kommst du damit weiter?

Grüße
reverend


Bezug
                                                
Bezug
Ebene und Gerade: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:28 Fr 30.09.2011
Autor: zitrone

Danke fuer die Hilfe reverend!:)

Ich hab die Darstellung der Ebene in eine Hessesche Normalform umwandeln!>

[mm] \vec{n} [/mm] = [mm] \vektor{2 \\ 1 \\ 2} [/mm]

[mm] |\vec{n} [/mm] | = [mm] \wurzel{2^2+1^2+2^2} [/mm] = [mm] \wurzel{9} [/mm]

[mm] Also>\bruch{2x+y+2z+20}{3} [/mm]


wie kann ich jetzt da was ablesen??

LG zitrone



Bezug
                                                        
Bezug
Ebene und Gerade: Antwort
Status: (Antwort) fertig Status 
Datum: 00:44 Fr 30.09.2011
Autor: reverend

Hallo nochmal,

> Ich hab die Darstellung der Ebene in eine Hessesche
> Normalform
>  
> [mm]\vec{n}[/mm] = [mm]\vektor{2 \\ 1 \\ 2}[/mm]
>  
> [mm]|\vec{n}[/mm] | = [mm]\wurzel{2^2+1^2+2^2}[/mm] = [mm]\wurzel{9}[/mm]
>  
> [mm]Also>\bruch{2x+y+2z+20}{3}[/mm]

Hier fehlt noch die Aussage =0. Ansonsten: richtig. Anders geschrieben: [mm] \bruch{1}{3}\vektor{2\\1\\2}\vec{x}-\bruch{20}{3}=0 [/mm]

Wenn ich jetzt z.B. [mm] \vec{x}=\vektor{0\\0\\0} [/mm] einsetze, dann stimmt die Gleichung nicht. Ich könnte aber die Gleichung etwas allgemeiner fassen:

[mm] \bruch{1}{3}\vektor{2\\1\\2}\vec{x}-\bruch{20}{3}=d [/mm]

Mit [mm] \vec{x}=\vec{0} [/mm] bekäme ich dann [mm] d=-\bruch{20}{3}, [/mm] und in der Tat ist [mm] |d|=\bruch{20}{3} [/mm] der Abstand der Ebene vom Ursprung, oder umgekehrt.

Das gilt auch für jeden anderen Funkt. So ist [mm] \vec{x_1}=\vektor{6\\3\\3} [/mm] offenbar nur [mm] \tfrac{1}{3} [/mm] von der Ebene entfernt.

Setze nun also einen allgemeinen Punkt Deiner Geraden in die HNF als [mm] \vec{x} [/mm] ein.

Grüße
reverend

> wie kann ich jetzt da was ablesen??
>  
> LG zitrone
>  
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de