www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Ebenenschar
Ebenenschar < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ebenenschar: Tipp
Status: (Frage) beantwortet Status 
Datum: 05:38 Di 21.02.2023
Autor: Delia00

Aufgabe
Eine Ebenenschar sei gegeben mit t [mm] \in \IR [/mm]
[mm] E_t [/mm]  x + ty = 2t
Ein Spiegel sei mit den Punkten gegeben
A(2|0|0), B(-2|4|0), C(-2 |4|4) und D (2|0|4)
Der Spiegel lässt sich um die Strecke PQ durch die Punkte P(0|2|0) und Q(0|2|4) drehen.
Der rechteckige Spiegel soll aus der Ebene [mm] E_1, [/mm] in welcher er liegt, in die Ebene [mm] E_3 [/mm] übertragen werden.
Bestimme die neuen Punkte des Spiegels, wenn dieser in der Ebene [mm] E_3 [/mm] liegt.

Hallo zusammen,

zunächst habe ich die Vektoren AP und PB bestimmt.

AP= [mm] \vektor{-2\\ 2\\0} [/mm]

Und PB = [mm] \vektor{-2\\2\\0} [/mm]

Die Längen der beiden Vektoren beträgt [mm] \wurzel{8} [/mm]

Dann habe ich mithilfe der Spurpunkte der Ebene [mm] E_3 [/mm] einen Richtungsvektor bestimmt.
Spurpunkt [mm] S_x [/mm] (6|0|0) und [mm] S_y [/mm] (0|2|0)
Der RV lautet:
[mm] \vektor{-6\\2\\0} [/mm]

Dann wurde dieser Vektor vervielfacht mit dem Faktor [mm] \bruch{1}{\wurzel{40}} [/mm]

Ich verstehe hier nicht, woher die Zahl kommt und warum der RV mit dieser Zahl [mm] \bruch{1}{\wurzel{40}} [/mm] vervielfacht wurde.

Als Lösung soll für die neuen Eckpunkte dies rauskommen:

A‘ (2,68|1,11|0), B‘ (-2,68|2,89|0), C‘(-2,68|2,89|4) und D‘(2,68|1,11|4)

Könnte mir bitte jemand bei den letzten Schritten beim Lösen der Aufgabe helfen.

DANKE

        
Bezug
Ebenenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 07:58 Di 21.02.2023
Autor: statler

Hi!

Mit Hilfe einer Zeichnung könntest du dir die Herangehensweise wahrscheinlich selbst erklären.

> Eine Ebenenschar sei gegeben mit t [mm]\in \IR[/mm]
>  [mm]E_t[/mm]  x + ty =
> 2t
>  Ein Spiegel sei mit den Punkten gegeben
> A(2|0|0), B(-2|4|0), C(-2 |4|4) und D (2|0|4)
>  Der Spiegel lässt sich um die Strecke PQ durch die Punkte
> P(0|2|0) und Q(0|2|4) drehen.
>  Der rechteckige Spiegel soll aus der Ebene [mm]E_1,[/mm] in welcher
> er liegt, in die Ebene [mm]E_3[/mm] übertragen werden.
>  Bestimme die neuen Punkte des Spiegels, wenn dieser in der
> Ebene [mm]E_3[/mm] liegt.
>  Hallo zusammen,
>  
> zunächst habe ich die Vektoren AP und PB bestimmt.
>  
> AP= [mm]\vektor{-2\\ 2\\0}[/mm]
>
> Und PB = [mm]\vektor{-2\\2\\0}[/mm]
>  
> Die Längen der beiden Vektoren beträgt [mm]\wurzel{8}[/mm]

P ist der Mittelpunkt der Strecke AB, entsprechend Q der von CD.

> Dann habe ich mithilfe der Spurpunkte der Ebene [mm]E_3[/mm] einen
> Richtungsvektor bestimmt.

Ein anderer Spannvektor wäre PQ.

>  Spurpunkt [mm]S_x[/mm] (6|0|0) und [mm]S_y[/mm] (0|2|0)
>  Der RV lautet:
>  [mm]\vektor{-6\\2\\0}[/mm]
>  
> Dann wurde dieser Vektor vervielfacht mit dem Faktor
> [mm]\bruch{1}{\wurzel{40}}[/mm]

Damit bringst du ihn auf Länge 1.
  

> Ich verstehe hier nicht, woher die Zahl kommt und warum der
> RV mit dieser Zahl [mm]\bruch{1}{\wurzel{40}}[/mm] vervielfacht
> wurde.
>  
> Als Lösung soll für die neuen Eckpunkte dies rauskommen:
>  
> A‘ (2,68|1,11|0), B‘ (-2,68|2,89|0), C‘(-2,68|2,89|4)
> und D‘(2,68|1,11|4)

A' muß auf der Geraden durch P mit der Richtung deines Richtungsvektors liegen und von P den Abstand [mm]\wurzel{8}[/mm] haben. Das gibt übrigens 2 Lösungen.

Soviel auf die Schnelle.
Dieter



Bezug
                
Bezug
Ebenenschar: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:59 Di 21.02.2023
Autor: Delia00

Die Erklärung, dass man den Vektor auf die Länge eins bekommen wollte, habe ich verstanden, danke.

Anschließend wurde dies gerechnet.

Der Vektor OA‘ wurde wie folgt konzipiert:

Vektor OP - [mm] \bruch {\wurzel{8}}{\wurzel{40}} [/mm] * [mm] \vektor{-6\\2\\0} [/mm]

Hier verstehe ich nicht, wie und warum so gerechnet wurde, um den neuen Eckpunkt des Spiegels zu erhalten.

Könnte mir da jemand helfen bitte


Danke

Bezug
                        
Bezug
Ebenenschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:43 Di 21.02.2023
Autor: statler

Hallo,

ich wiederhole meinen Vorschlag mit der Zeichnung. Dabei reicht es völlig, wenn du dir den Vorgang von oben (aus z-Richtung) anschaust. Die beiden Ebenen [mm] E_1 [/mm] und [mm] E_3 [/mm] sehen dann aus wie Geraden, der Spiegel wie eine Strecke. Und dann überlegst du dir, wie du von O über P nach A' kommst.

Vielleicht erkennst du dann auch die 2. Lösung.

Gruß Dieter
[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                        
Bezug
Ebenenschar: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:22 Do 23.02.2023
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de