www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenraum Lemma Beweis
Eigenraum Lemma Beweis < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenraum Lemma Beweis: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:27 Fr 13.01.2012
Autor: kullinarisch

Aufgabe
Beweisen Sie:

Lemma: Sei [mm] \lambda \in \IK [/mm] beliebig und sei [mm] E_{\lambda} [/mm] := {v [mm] \in [/mm] V | [mm] \alpha(v) [/mm] = [mm] \lambda [/mm] v } = [mm] Ker(\alpha [/mm] - [mm] \lambda I_d) [/mm]
Dann ist [mm] E_{\lambda} [/mm] ein Unterraum von V.

Hallo! Ich habe mir nochmal zu Gemüte geführt, wie man zeigt, dass etw. ein Unterraum eines Vektorraums ist. Hier habe ich versucht dieses Lemma zu beweise, in der es in der Vorlesung kein Beweis zu gab. Ich würde mich freuen wenn mal jemand drüber schaut!

Beweis:

1) 0 [mm] \in [/mm] V ist auch in [mm] E_{\lambda}, [/mm] da:

[mm] (\alpha [/mm] - [mm] \lambda I_d) [/mm] 0 [mm] =\alpha [/mm] 0 - [mm] \lambda I_d [/mm] 0 = 0



2) Seien [mm] v_1, v_2 \in E_{\lambda}, \lambda_1 \in \IK, [/mm] s.d. gilt: [mm] \alpha(v_1) [/mm] - [mm] \lambda_1 v_1 [/mm] = 0 und [mm] \alpha(v_2) [/mm] - [mm] \lambda_1 v_2 [/mm] = 0

Dann:

[mm] (\alpha [/mm] - [mm] \lambda I_d)(v_1 [/mm] + [mm] v_2) [/mm]

= [mm] \alpha (v_1 [/mm] + [mm] v_2) [/mm] - [mm] \lambda I_d (v_1 [/mm] + [mm] v_2) [/mm]

= [mm] \alpha (v_1) [/mm] + [mm] \alpha (v_2) [/mm] - [mm] \lambda I_d (v_1) [/mm] - [mm] \lambda I_d (v_2) [/mm] (alpha Homom.)

= [mm] \alpha (v_1) [/mm] - [mm] \lambda I_d (v_1) [/mm] + [mm] \alpha (v_2) [/mm] - [mm] \lambda I_d (v_2) [/mm]

= 0 (Vor.)



3) Sei [mm] v_1 \in \E_{\lambda}, \lambda, \mu \in \IK, [/mm] s.d. gilt: [mm] \alpha(v_1) [/mm] = [mm] \lambda v_1 [/mm]

Dann:

[mm] (\alpha [/mm] - [mm] \lambda I_d)(\mu v_1) [/mm]

= [mm] \alpha (\mu v_1) [/mm] - [mm] \lambda I_d(\mu v_1) [/mm]

= [mm] \mu \alpha(v_1) [/mm] - [mm] \mu \lambda I_d(v_1) [/mm]

= [mm] \mu (\alpha(v_1) [/mm] - [mm] \lambda I_d(v_1)) [/mm]

= [mm] \mu [/mm] 0

= 0



4) [mm] E_{\lambda} [/mm] = [mm] Ker(\alpha [/mm] - [mm] \lambda I_d) \subseteq [/mm] V offensichtlich

Also [mm] E_{\lambda} [/mm] Unterraum von V [mm] \Box [/mm]

Grüße, Kulli

        
Bezug
Eigenraum Lemma Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 16:41 Fr 13.01.2012
Autor: MatthiasKr

Hallo,

> Beweisen Sie:
>  
> Lemma: Sei [mm]\lambda \in \IK[/mm] beliebig und sei [mm]E_{\lambda}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

:=

> {v [mm]\in[/mm] V | [mm]\alpha(v)[/mm] = [mm]\lambda[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

v } = [mm]Ker(\alpha[/mm] - [mm]\lambda I_d)[/mm]

> Dann ist [mm]E_{\lambda}[/mm] ein Unterraum von V.
>  Hallo! Ich habe mir nochmal zu Gemüte geführt, wie man
> zeigt, dass etw. ein Unterraum eines Vektorraums ist. Hier
> habe ich versucht dieses Lemma zu beweise, in der es in der
> Vorlesung kein Beweis zu gab. Ich würde mich freuen wenn
> mal jemand drüber schaut!
>
> Beweis:
>  
> 1) 0 [mm]\in[/mm] V ist auch in [mm]E_{\lambda},[/mm] da:
>  
> [mm](\alpha[/mm] - [mm]\lambda I_d)[/mm] 0 [mm]=\alpha[/mm] 0 - [mm]\lambda I_d[/mm] 0 = 0
>  
>

jep.

>
> 2) Seien [mm]v_1, v_2 \in E_{\lambda}, \lambda_1 \in \IK,[/mm] s.d.
> gilt: [mm]\alpha(v_1)[/mm] - [mm]\lambda_1 v_1[/mm] = 0 und [mm]\alpha(v_2)[/mm] -
> [mm]\lambda_1 v_2[/mm] = 0
>  
> Dann:
>
> [mm](\alpha[/mm] - [mm]\lambda I_d)(v_1[/mm] + [mm]v_2)[/mm]
>
> = [mm]\alpha (v_1[/mm] + [mm]v_2)[/mm] - [mm]\lambda I_d (v_1[/mm] + [mm]v_2)[/mm]
>
> = [mm]\alpha (v_1)[/mm] + [mm]\alpha (v_2)[/mm] - [mm]\lambda I_d (v_1)[/mm] - [mm]\lambda I_d (v_2)[/mm]
> (alpha Homom.)
>  
> = [mm]\alpha (v_1)[/mm] - [mm]\lambda I_d (v_1)[/mm] + [mm]\alpha (v_2)[/mm] - [mm]\lambda I_d (v_2)[/mm]
>  
> = 0 (Vor.)
>  

richtig.

>
> 3) Sei [mm]v_1 \in \E_{\lambda}, \lambda, \mu \in \IK,[/mm] s.d.
> gilt: [mm]\alpha(v_1)[/mm] = [mm]\lambda v_1[/mm]
>  
> Dann:
>
> [mm](\alpha[/mm] - [mm]\lambda I_d)(\mu v_1)[/mm]
>
> = [mm]\alpha (\mu v_1)[/mm] - [mm]\lambda I_d(\mu v_1)[/mm]
>
> = [mm]\mu \alpha(v_1)[/mm] - [mm]\mu \lambda I_d(v_1)[/mm]
>
> = [mm]\mu (\alpha(v_1)[/mm] - [mm]\lambda I_d(v_1))[/mm]
>  
> = [mm]\mu[/mm] 0
>  
> = 0
>

genau.

>
>
> 4) [mm]E_{\lambda}[/mm] = [mm]Ker(\alpha[/mm] - [mm]\lambda I_d) \subseteq[/mm] V
> offensichtlich
>  
> Also [mm]E_{\lambda}[/mm] Unterraum von V [mm]\Box[/mm]

[daumenhoch]

abkürzen könnte man das ganze, wenn in der VL bewiesen wurde, dass der kern jeder linearen abbildung ein unterraum ist. dann wären die eigenräume nur ein sonderfall dieser aussage.

gruss
matthias



Bezug
                
Bezug
Eigenraum Lemma Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:47 Fr 13.01.2012
Autor: kullinarisch

Moin, danke! Das haben wir auch bewiesen, aber ich wollte ja nur etwas die Beweisführung üben :-P

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de