www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Eigenschaften der Verknüpfung
Eigenschaften der Verknüpfung < Sonstiges < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenschaften der Verknüpfung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:55 Mo 12.11.2007
Autor: Kueken

Aufgabe
Sie sollen überprüfen, welche der folgenden Eigenschaften jeweils für die Verknüpfung gelten: Assoziativität, Kommutativität, Existenz eines neutralen Elements.
x ° y=x^2y

Dieses hier ist das Beispiel.
Was ich nicht so ganz verstehe, ist wie die Einzelnen Terme hier zustande kommen:
Assoziativität: x°(y°z)= [mm] x°(y^2 z)=x^2 y^2 [/mm] z ungleich [mm] x^4 y^2 z=(x^2 [/mm] y)°z=(x°y)°z --> nicht erfüllt.

Also hier zum Beispiel, woher kommt beim zweiten Term auf einmal das [mm] y^2 [/mm] usw.? Das stand doch gar nicht in der Verknüpfung.
Hoffe jemand hat verstanden was ich meine :)
Liebe Grüße
Kerstin

        
Bezug
Eigenschaften der Verknüpfung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:31 Mo 12.11.2007
Autor: angela.h.b.


> Sie sollen überprüfen, welche der folgenden Eigenschaften
> jeweils für die Verknüpfung gelten: Assoziativität,
> Kommutativität, Existenz eines neutralen Elements.
>  x ° y=x^2y
>  Dieses hier ist das Beispiel.
>  Was ich nicht so ganz verstehe, ist wie die Einzelnen
> Terme hier zustande kommen:
>  Assoziativität: x°(y°z)= [mm]x°(y^2 z)=x^2 y^2[/mm] z ungleich [mm]x^4 y^2 z=(x^2[/mm]
> y)°z=(x°y)°z --> nicht erfüllt.
>  
> Also hier zum Beispiel, woher kommt beim zweiten Term auf
> einmal das [mm]y^2[/mm] usw.? Das stand doch gar nicht in der
> Verknüpfung.
>  Hoffe jemand hat verstanden was ich meine :)

Hallo,

ich glaube, daß ich gut verstanden habe, was Du meinst.

Es wurde hier eine neue Verknüpfung [mm] \circ [/mm] eingeführt.

Wie die funktionieren soll, wird durch [mm] x\circ [/mm] y:=x^2y erklärt.
Das ist so eine Art Kochrezept zum Verknüpfen, in Worten: man nehme das erste Element, quadriere es und multipliziere mit dem zweiten.

Nun soll die Assoziativität geprüft werden, ob also [mm] x°(y°z)=(x\circ y)\circ [/mm] z  stimmt für alle x,y,z.

Dazu rechnet man den rechten un linken Term jeweils aus.

Das tun wir nun.

Was ist [mm] x\circ (y\circ [/mm] z)?

Zuerst schauen wir in der Klammer. Was müssen wir da machen? Erstes quadrieren, mit dem zweiten multiplizieren, also ist [mm] y\circ [/mm] z=y^2z, und wir haben schonmal

[mm] x\circ (y\circ z)=x\circ [/mm] (y^2z)

Die beiden Elemente, die nun durch [mm] \circ [/mm] ´verknüpft werden, sind x und y^2z.
Wie geht das? Erstes quadrieren, mit dem zweiten multiplizieren, also erhält man

[mm] x\circ [/mm] (y^2z)=x^2y^2z.

Durchdenke Dir die Sache bis hier gründlich.

Wenn Du meinst, es verstanden zu haben, versuche Dich an der anderen Seite, an

[mm] (x\circ y)\circ [/mm] z=...

Gruß v. Angela

Bezug
                
Bezug
Eigenschaften der Verknüpfung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:58 Mo 12.11.2007
Autor: Kueken

Jaaa, du hast verstanden was ich meine :)
Danke abermals für die Hilfe!
Ich hoffe ich habs nu:
Also
(x°y)°z
erstes quadrieren wäre [mm] (x^2y)^2 [/mm] und mit dem zweiten multiplizieren: [mm] (x^2y)^2*z= [/mm] x^4y^2z
Dann versuch ich mich mal an den Übungsaufgaben... hoffentlich hab ichs dann immernoch verstanden.

Ganz liebe Grüße
Kerstin

Bezug
                        
Bezug
Eigenschaften der Verknüpfung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:12 Mo 12.11.2007
Autor: Kueken

doch noch ein Problem und zwar mit dem neutralen Element.
x°y=y ist die 1. Übhungsaufgabe.
Die ersten beiden Sachen hatte ich richtig.
Jetzt steht hier zur Existenz des neutralen Elements:
x°n=x ist nur für x=n erfüllbar.

Mein Lösungsansatz war:
x°y=y
yn=y
n=1
Deshalb hatte ich raus, dass es ein neutrales Element gibt.
What's wrong?
Liebe Grüße
Kerstin

Bezug
                                
Bezug
Eigenschaften der Verknüpfung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:22 Mo 12.11.2007
Autor: schachuzipus

Hallo Kerstin,


wenn es ein  neutrale Element gäbe, sagen wir es hieße $n$

Dann müsste für alle x gelten: [mm] $n\circ x=x\circ [/mm] n$

Nun berechne, was ist [mm] $n\circ [/mm] x$ ?

Das ist $=n^2x$

Und [mm] $x\circ [/mm] n=x^2n$

Also müsste gelten: $n^2x=x^2n$

Kann das sein?

Bedenke, dass das neutrale Element eindeutig ist!


LG

schachuzipus

Bezug
                                        
Bezug
Eigenschaften der Verknüpfung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:31 Mo 12.11.2007
Autor: Kueken

das bezieht sich jetzt auf die erste Aufgabe oder?
Weil ich bei der zweiten nicht weiterkomme x°y=y

Bezug
                                                
Bezug
Eigenschaften der Verknüpfung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:47 Mo 12.11.2007
Autor: Kueken

habs jetzt nochmal probiert und habe folgendes:
n°x=x°n (Ansatz)
n°(x°y)=x°y=y (linke Seite)
(x°y)°n=(x°y)°n=n
--> y=n
richtig so?

Bezug
                                                
Bezug
Eigenschaften der Verknüpfung: neutrales Element
Status: (Antwort) fertig Status 
Datum: 17:10 Mo 12.11.2007
Autor: Roadrunner

Hallo Kerstin!


Es muss doch zunächst gelten: [mm] $x\circ [/mm] n \ = \ x$

Also: [mm] $x\circ [/mm] n \ = \ [mm] x^2*n [/mm] \ = \ x$
Forme dies nun mal nach $n \ = \ ...$ um. Ist $n_$ eindeutig; sprich: ist $n_$ für beliebiges $x_$ immer gleich?


Gruß vom
Roadrunner


Bezug
                                                        
Bezug
Eigenschaften der Verknüpfung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:11 Mo 12.11.2007
Autor: Kueken

aber wo kommt denn das [mm] x^2 [/mm] her? das versteh ich nich...

Bezug
                                                                
Bezug
Eigenschaften der Verknüpfung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:13 Mo 12.11.2007
Autor: angela.h.b.


> aber wo kommt denn das [mm]x^2[/mm] her? das versteh ich nich...

Vom Kochrezept; erstes quadrieren, mit dem zweiten multiplizieren.

Gruß v. Angela

Bezug
                                                                        
Bezug
Eigenschaften der Verknüpfung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:17 Mo 12.11.2007
Autor: Kueken

jaja, aber ich war doch schon bei der ersten Übungsaufgabe, die lautet dasselbe machen mit x°y=y

ein missverständnis... :) hab schon gedacht ich bin total neben der Spur

Bezug
                                                                                
Bezug
Eigenschaften der Verknüpfung: schnell widerlegt
Status: (Antwort) fertig Status 
Datum: 17:20 Mo 12.11.2007
Autor: Roadrunner

Hallo Kerstin!


Aber mit der Verknüpfung [mm] $x\circ [/mm] n \ = \ n \ [mm] \not= [/mm] \ x$ ist die Existenz des neutales Elementes doch schnell widerlegt.


Gruß vom
Roadrunner


Bezug
                                                                                        
Bezug
Eigenschaften der Verknüpfung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 17:24 Mo 12.11.2007
Autor: Kueken

war das hier denn dann richtig :):
"habs jetzt nochmal probiert und habe folgendes:
n°x=x°n (Ansatz)
n°(x°y)=x°y=y (linke Seite)
(x°y)°n=(x°y)°n=n
--> y=n -->nicht erfüllt
richtig so? "


Bezug
                                                                                                
Bezug
Eigenschaften der Verknüpfung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:35 Mo 12.11.2007
Autor: angela.h.b.

Hallo,

kannst Du hier zu

> x°y=y ist die 1. Übungsaufgabe.

mal die Aufgabenstellung angeben?

Was sollst Du damit machen?

Prüfen, ob es zu gegebenem y solche ein x gibt,

ob es zu gegebenem x solch ein y gibt,

ob das für alle x,y gilt,

ob Du x,y findest, für die das gilt.

MIR ist das nicht klar, was Du eigentlich tun sollst und willst.

Gruß v. Angela

Bezug
                                                                                                        
Bezug
Eigenschaften der Verknüpfung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:43 Mo 12.11.2007
Autor: Kueken

Sorry, dass das so nen Kuddelmuddel gegeben hat. Das nächste mal mach ich ne neue Diskussion auf.
Also das war genau dieselbe Aufgabenstellung nur mit der neuen Verknüpfung. Ich schreibs jetzt nochmal hin:
Sie sollen überprüfen, welche der folgenden Eigenschaften jeweils für die Verknüpfung gelten: Assoziativität, Kommutativität, Existenz eines neutralen Elements.
Die Verknüpfung dazu x°y=y
Ich war bei der Überprüfung auf Existenz eines neutralen Elements. Die Assoziativität und Komm. hatte ich richtig, aber bei dem neutralen Element bin ich nicht sicher, ob ich das richtig verstanden habe.

Liebe Grüße
Kerstin

Bezug
                                                                                                        
Bezug
Eigenschaften der Verknüpfung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:43 Mo 12.11.2007
Autor: Kueken

Aufgabe
Sie sollen überprüfen, welche der folgenden Eigenschaften jeweils für die Verknüpfung gelten: Assoziativität, Kommutativität, Existenz eines neutralen Elements.
Die Verknüpfung dazu x°y=y

Sorry, dass das so nen Kuddelmuddel gegeben hat. Das nächste mal mach ich ne neue Diskussion auf.
Also das war genau dieselbe Aufgabenstellung nur mit der neuen Verknüpfung. Ich schreibs jetzt nochmal hin (siehe oben)

Ich war bei der Überprüfung auf Existenz eines neutralen Elements. Die Assoziativität und Komm. hatte ich richtig, aber bei dem neutralen Element bin ich nicht sicher, ob ich das richtig verstanden habe.

Liebe Grüße
Kerstin

Bezug
                                                                                                                
Bezug
Eigenschaften der Verknüpfung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:11 Mo 12.11.2007
Autor: angela.h.b.

Achso!!!! Jetzt kapiere ich das!

Die Verknüpfung ist definiert durch [mm] x\circ [/mm] y:= y    für alle x,y [mm] (\in [/mm] ???),

und Du möchtest wissen, ob es ein neutrales Element n gibt für diese Verknüpfung.

Wenn es so ein neutrales Element n  gibt, muß für alle x gelten:

i) [mm] n\circ [/mm] x=x
und
ii) [mm] x\circ [/mm] n=x

i) [mm] x=n\circ [/mm] x=x, gilt für alle n und alle x  (das liefert besondere Information)

ii) [mm] x=x\circ [/mm] n=n   ==> nur für x=n ist diese Bedingung zu erfüllen, also gibt es kein neutrales Element, denn das müßte ja für sämtlcihe Elemente der Menge passen.

Gruß v. Angela



Bezug
                                                                                                                        
Bezug
Eigenschaften der Verknüpfung: Dankeschön
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:42 Di 13.11.2007
Autor: Kueken

Hab heut morgen noch ein bissi drüber nachgedacht und ich glaube es ist nu drin. Eben hab ich die restlichen Übungen gemacht und ich hab dieselben Lösungen wie das Buch :)*freu*

Ganz lieben Dank an euch alle und vor allem an Angela!

Liebe Grüße
von der schlaueren Kerstin

Bezug
                        
Bezug
Eigenschaften der Verknüpfung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Mo 12.11.2007
Autor: schachuzipus

Hallo Kerstin,


> Jaaa, du hast verstanden was ich meine :)
>  Danke abermals für die Hilfe!
>  Ich hoffe ich habs nu:
>  Also
> (x°y)°z
>  erstes quadrieren wäre [mm](x^2y)^2[/mm] und mit dem zweiten
> multiplizieren: [mm](x^2y)^2*z=[/mm] x^4y^2z [daumenhoch]

Ganz genau!!

>  Dann versuch ich mich mal an den Übungsaufgaben...
> hoffentlich hab ichs dann immernoch verstanden.
>  
> Ganz liebe Grüße

>  Kerstin


Dto.


schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de