www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Eigenvektor
Eigenvektor < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenvektor: Gauß-Alg
Status: (Frage) beantwortet Status 
Datum: 11:22 So 30.05.2010
Autor: sweety321

Aufgabe
Berechnen Sie alle Eigenwerte und Eigenvektoren der folgenden Matrizen.
A =
3   3    0
0   0    1
0  −2   3
Bestimmen Sie jeweils, ob die Matrix über R diagonalisierbar ist und geben
Sie gegebenenfalls eine Basis des [mm] R^3 [/mm] aus Eigenvektoren an.

Hallo,

ich habe als Eigenwerte 1;2;3 errechnet.

Beim Einsetzen von 3 erhalte ich durch Umformen das LGS:
( 0 1 0 ) ( x )
( 0 0 1 ) ( y ) = 0
( 0 0 0 ) ( z )

Ich habe gerade einen Blackout, wie ich daraus jetzt x,y,z bzw. einen Eigenvektor bestimmen kann.... Bitte um Hilfe! Danke!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 11:36 So 30.05.2010
Autor: Arcesius

Hallo

> Berechnen Sie alle Eigenwerte und Eigenvektoren der
> folgenden Matrizen.
>  A =
>  3   3    0
>  0   0    1
>  0  −2   3
>  Bestimmen Sie jeweils, ob die Matrix über R
> diagonalisierbar ist und geben
>  Sie gegebenenfalls eine Basis des [mm]R^3[/mm] aus Eigenvektoren
> an.
>  Hallo,
>
> ich habe als Eigenwerte 1;2;3 errechnet.

[ok] das ist soweit richtig

>  
> Beim Einsetzen von 3 erhalte ich durch Umformen das LGS:
>  ( 0 1 0 ) ( x )
>  ( 0 0 1 ) ( y ) = 0
>  ( 0 0 0 ) ( z )

>

Eine Matrix-Vektor Multiplikation spuckt keine Zahl als Ergebnis... ;)

Die Matrix hast du richtig auf Zeilenstufenform gebracht. Du hast eine Nullzeile erhalten, also setze [mm] x_{1} [/mm] = t.

Aus den restlichen Zeilen ergibt sich [mm] x_{3} [/mm] = 0 und [mm] x_{2} [/mm] = 0. Somit hast du einen Eigenvektor v = [mm] \vektor{1\\0\\0} [/mm] gefunden.
  

> Ich habe gerade einen Blackout, wie ich daraus jetzt x,y,z
> bzw. einen Eigenvektor bestimmen kann.... Bitte um Hilfe!
> Danke!
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Grüsse, Amaro

Bezug
                
Bezug
Eigenvektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:17 So 30.05.2010
Autor: sweety321

Aufgabe
Berechnen Sie alle Eigenwerte und Eigenvektoren der folgenden Matrizen.
A =
3   3    0
0   0    1
0  −2   3
Bestimmen Sie jeweils, ob die Matrix über R diagonalisierbar ist und geben
Sie gegebenenfalls eine Basis des $ [mm] R^3 [/mm] $ aus Eigenvektoren an.  

Hm, ich glaube ich habs gerafft.

Ist es dann richtig, wenn ich für den Eigenwert 2 raushabe:
z=t; y=t/2; x=(-3/2)t
Ein Eigenvektor: (-9 / 3 / 6)

Und für 1:
z=t; y=t; x=(-3/2)t
Ein Eigenvektor: (-9 / 6 / 6)

Diagonalisierbar ist die Matrix, wenn diese drei Vektoren eine Basis sind, also lin. unabh. sind?

Bezug
                        
Bezug
Eigenvektor: Antwort
Status: (Antwort) fertig Status 
Datum: 12:32 So 30.05.2010
Autor: Arcesius

Hey

> Berechnen Sie alle Eigenwerte und Eigenvektoren der
> folgenden Matrizen.
>  A =
>  3   3    0
>  0   0    1
>  0  −2   3
>  Bestimmen Sie jeweils, ob die Matrix über R
> diagonalisierbar ist und geben
>  Sie gegebenenfalls eine Basis des [mm]R^3[/mm] aus Eigenvektoren
> an.
> Hm, ich glaube ich habs gerafft.
>  
> Ist es dann richtig, wenn ich für den Eigenwert 2
> raushabe:
>  z=t; y=t/2; x=(-3/2)t
>  Ein Eigenvektor: (-9 / 3 / 6)
>  
> Und für 1:
>  z=t; y=t; x=(-3/2)t
>  Ein Eigenvektor: (-9 / 6 / 6)

Im Prinzip schon.. aber du kannst alles noch durch 3 teilen.. :)

>  
> Diagonalisierbar ist die Matrix, wenn diese drei Vektoren
> eine Basis sind, also lin. unabh. sind?

Und, sind sie es? ;)

Grüsse, Amaro

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de