www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwert d. Inversen
Eigenwert d. Inversen < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwert d. Inversen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:42 Do 03.05.2007
Autor: Nadine87

Aufgabe
Die Eigenwerte der Matrix A Element K^(nxn) seien [mm] \lambda_1,\lambda_2,....,\lambda_n. [/mm]
1) Wie lauten die Eigenwerte der Inversen Matrix A^-1?
2) Wie lauten die Eigenwerte der Matrix [mm] A+\mu [/mm] E, für [mm] \mu \in [/mm] K?

Hey ihr!

zu 1): Ich weiß, dass die Eigenwerte der Inversen 1/ ¦Ë sind, weiß aber nicht, wie ich das beweise!
zu 2): Hab ich echt gar keine Ahnung!

Gruß,
Nadine


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Eigenwert d. Inversen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:04 Do 03.05.2007
Autor: angela.h.b.


> Die Eigenwerte der Matrix A Element K^(nxn) seien
> ¦Ë1,¦Ë2,....,¦Ën.
>  1) Wie lauten die Eigenwerte der Inversen Matrix A^-1?
>  2) Wie lauten die Eigenwerte der Matrix A+¦ÌI, f¨¹r ¦Ì
> Element K?
>  Hey ihr!
>  
> zu 1): Ich weiß, dass die Eigenwerte der Inversen 1/
> ¦Ë sind, weiß aber nicht, wie ich das beweise!


Hallo,

zu 1) Sei [mm] \lambda [/mm] ein Eigenwert von A und x ein zugehöriger Eigenvektor.

Dann ist [mm] Ax=\lambda [/mm] x.

Nun multipliziere beide Seiten von vorne mit [mm] A^{-1}. [/mm]

zu 2) Ich kann das leider nicht lesen, vielleicht kannst Du das noch in lesbare Form bringen.

Gruß v. Angela

Bezug
                
Bezug
Eigenwert d. Inversen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:25 Do 03.05.2007
Autor: Nadine87

Also, zum 2.Teil:

my (griechischer Buchstabe)

Die Aufgabe lautet:
Wie lauten die Eigenwerte der Matrix A+my I für my Element K?

zu1:

Wenn ich von vorne multipliziere mit A^-1, wie forme ich dann weiter um?

Gruß,
Nadine

Bezug
                        
Bezug
Eigenwert d. Inversen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Do 03.05.2007
Autor: angela.h.b.


> zu1:
>  
> Wenn ich von vorne multipliziere mit A^-1, wie forme ich
> dann weiter um?

Was steht denn da, wenn Du [mm] A^{-1} [/mm] dranmultipliziert hast?

Gruß v. Angela

Bezug
        
Bezug
Eigenwert d. Inversen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Do 03.05.2007
Autor: angela.h.b.


> Die Eigenwerte der Matrix A Element K^(nxn) seien
> [mm]\lambda_1,\lambda_2,....,\lambda_n.[/mm]
>  1) Wie lauten die Eigenwerte der Inversen Matrix A^-1?
>  2) Wie lauten die Eigenwerte der Matrix [mm]A+\mu[/mm] E, für [mm]\mu \in[/mm]

>  zu 2): Hab ich echt gar keine Ahnung!

Hallo,

dann geh die Sache doch mal experimentell an.

Nimm Dir eine Matrix, deren Eigenwerte Du kennst, addiere ein Vielfaches der Einheitsmatrix und berechne die Eigenwerte der neuen Matrix.
Spätestens beim dritten Mal wirst Du einen Verdacht schöpfen.
Diesen dann formulieren und beweisen.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de