www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte, Eigenvektoren
Eigenwerte, Eigenvektoren < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte, Eigenvektoren: Hilfe bei der Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:16 Mo 25.04.2016
Autor: siggi571

Aufgabe
Gegeben ist die Matrix

A= [mm] \pmat{ 0 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & -2 & 0 } [/mm]

a) Bestimmen Sie alle Eigenwerte und Eigenvektoren
b) Wie lautet die allgemeine Lösung von

[mm] \overrightarrow{y'} [/mm] = A * [mm] \overrightarrow{y} [/mm] mit [mm] \overrightarrow{y} [/mm] = [mm] \vektor{y_{1} (x) \\ y_{2} (x) \\ y_{3} (x)} [/mm]


Hallo Community,

ich komme bei folgender Aufgabe in Details nicht weiter. Ich bitte deshalb um eure Hilfe.

a) Mein Ansatz: Eigenwerte ermitteln durch [mm] (A-\lambda*E)=0 [/mm]
Hierdurch erhalte ich [mm] \lambda_{1} [/mm] = 0 ; [mm] \lambda_{2,3} [/mm] = 2

Nun zu den Eigenvektoren. Hier setze ich meine Werte für [mm] \lambda [/mm] in den Ansatz [mm] (A-\Lambda*E)*x=0 [/mm] ein.

Ich erhalte die Matrix
[mm] \vmat{ 0 & 0 & 0 \\ 0 & 0 & -2 \\ 0 & -2 & 0 } [/mm] für [mm] \lambda_{1} [/mm] und [mm] \vmat{ -2 & 0 & 0 \\ 0 & -2 & -2 \\ 0 & -2 & -2 } [/mm] für [mm] \lambda_{2,3} [/mm]

Und hier mein Problem. Wie komme ich nun auf meine Eigenvektoren?
Ich müsste ja drei bekommen. Ich zeige mal exemplarisch, was ich mir für [mm] \lambda_{1} [/mm] denke, ich kann es aber nicht begründen, weshalb, darum brauch ich eure Hilfe:

Aus Zeile 2 folge [mm] x_{2} [/mm] = 0, Aus Zeile 3 folgt [mm] x_{3} [/mm] = 0,
da es eine Nullzeile gibt, habe ich einen frei wählbaren Parameter. Demzufolge ist [mm] x_{1} [/mm] = r ; r [mm] \in \IR [/mm] \ 0

Ergebnis:
[mm] \overrightarrow{x_{1}} [/mm] = [mm] \vektor{ r \\ 0 \\ 0} [/mm]

Parallel zur obigen Argumentation erhalte ich

[mm] \overrightarrow{x_{2}} [/mm] = [mm] \vektor{ 0 \\ -r \\ r} [/mm]

Ist das richtig und wenn ja warum?

Für den dritten Eigenvektor würde ich das Kreuzprodukt der beiden nehmen, da Eigenvektoren senkrecht zueinander stehen? Stimmt das?

b) Hier fehlt mir jeglicher Ansatz im Moment, allerdings habe ich noch nicht genauer nachgedacht. Bitte noch nicht beachten, werde ich im Laufe der nächsten Stunden ausarbeiten



        
Bezug
Eigenwerte, Eigenvektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 23:08 Mo 25.04.2016
Autor: leduart

Hallo
ich hab für [mm] \lambda_2=2 [/mm] für [mm] \lambda_3=-2 [/mm] raus  dann hast du 3 EV
die 2 die du hast sind richtig.
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de