www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte, Matrix
Eigenwerte, Matrix < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte, Matrix: Frage
Status: (Frage) beantwortet Status 
Datum: 23:29 Mi 25.05.2005
Autor: VHN

Hallo, an alle!

Ich habe folgende Aufgabe bearbeitet, habe allerdings (hoffe ich :-) ) nur die Teilaufgabe (a) lösen können, bei der (b) weiß ich nicht, wie ich es machen soll. Ich komme da auf keinen gescheiten Ansatz.

Aufgabe:
Sei A [mm] \in \IR^{n,n} [/mm] diagonalisierbar. Zeige:
(a) Hat A nur einen Eigenwert [mm] \lambda \in \IR, [/mm] so ist A = [mm] \lambda E_{n}. [/mm]
(b) Sind alle Eigenwerte von A nicht negativ, so gibt es eine Matrix B mit [mm] B^{2} [/mm] = A.

Beweis zu (a):
Da A diagonalisierbar ist, gibt es eine invertierbare Matrix S [mm] \in \IR^{n,n}, [/mm] so dass [mm] SAS^{-1} [/mm] = D gilt, wobei D eine Diagonalmatrix ist, dessen Diagonaleinträge die Eigenwerte von A sind.
Da A nur einen einzigen Eigenwert hat, lautet das charakt. Polynom von A wie folgt:
[mm] p_{A} [/mm] (t) = [mm] det(A-tE_{n}) [/mm] = [mm] (t-\lambda)^{n}. [/mm]
Das heißt, dass D folgende gestalt haben muss: D = [mm] \lambda E_{n}. [/mm]
Also gilt:
[mm] SAS^{-1} [/mm] = D
[mm] SAS^{-1} [/mm] = [mm] \lambda E_{n} [/mm]
[mm] AS^{-1} [/mm] = [mm] S^{-1} \lambda E_{n} [/mm]
A = [mm] S^{-1} \lambda E_{n} [/mm] S  (Vorziehen der Konstante [mm] \lambda) [/mm]
A = [mm] \lambda S^{-1} E_{n} [/mm] S
A = [mm] \lambda S^{-1} [/mm] S
A = [mm] \lambda E_{n}. [/mm]

Fertig. Ist das richtig so?

Bei der (b) tut es mir wirklich leid, aber ich weiß echt nicht, wie ich die aufgabe anpacken soll.

Könnt ihr mir bitte weiterhelfen und mir einen Tipp geben? Vielen Dank!

Schönen Feiertag noch morgen! :-)

VHN





        
Bezug
Eigenwerte, Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 00:01 Do 26.05.2005
Autor: Max

Hallo,

erstmal gilt doch für [mm] $Bv=\mu [/mm] v$, dass damit [mm] $B^2v=\mu^2 [/mm] v$. Da [mm] $Av=\lambda [/mm] v$ und [mm] $\lambda>0$ [/mm] existiert [mm] $\mu^2=\lambda$. [/mm] Du musst jetzt nur noch zeigen, dass es damit auch zwingen eine Matrix $B$ mit [mm] $B^2=A$ [/mm] gibt. Evtl. kann man dies ja mit einem Widerspruchsbeweis zeigen.

Gruß Max

Bezug
        
Bezug
Eigenwerte, Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 Do 26.05.2005
Autor: Stefan

Hallo VHN!

Die erste Aufgabe ist richtig gelöst. [hut]

Jetzt zur zweiten Aufgabe:

Da $A$ diagonalisierbar ist, gibt es eine invertierbare Matrix $S$ mit

[mm] $SAS^{-1}=D$, [/mm]

wobei $D$ eine Diagonalmatrix ist. Da $A$ nur nicht-negative Eigenwerte besitzt, sind die Elemente von $D$ alle nicht-negativ. Sei [mm] $\sqrt{D}$ [/mm] die Diagonalmatrix, in deren Einträge die Wurzeln der Einträge von $D$ stehen.

Dann gilt:

[mm] $(\sqrt{D})^2=D$, [/mm]

und

$A = [mm] S^{-1}DS [/mm] = [mm] S^{-1}(\sqrt{D})^2S [/mm] = [mm] (S^{-1}\sqrt{D}S)^2$. [/mm]

Setze jetzt: $B:=  [mm] S^{-1}\sqrt{D}S$. [/mm]

Viele Grüße
Stefan

Bezug
                
Bezug
Eigenwerte, Matrix: frage zur antwort
Status: (Frage) beantwortet Status 
Datum: 23:01 So 29.05.2005
Autor: VHN

Hallo, stefan!

Danke für deine Antwort. allerdings hab ich da noch eines nicht so ganz verstanden. ich hoffe, du kannst mich da nochmal aufklären.

Wieso gilt [mm] S^{-1} (\wurzel{D})^{2} [/mm] S = [mm] (S^{-1} \wurzel{D} S)^{2}? [/mm]

heißt das, dass das Quadrat einer invertierbaren Matrix immer die Matrix selber ist, oder wieso gilt hier die gleichheit?

Danke für deine Hilfe!

VHN

Bezug
                        
Bezug
Eigenwerte, Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 23:05 So 29.05.2005
Autor: Stefan

Hallo VHN!

> Wieso gilt [mm]S^{-1} (\wurzel{D})^{2}[/mm] S = [mm](S^{-1} \wurzel{D} S)^{2}?[/mm]

Es gilt:

[mm] $(S^{-1}\wurzel{D}S)^2=(S^{-1}\wurzel{D}S)(S^{-1}\wurzel{D}S) [/mm] = [mm] S^{-1}\wurzel{D}(\underbrace{SS^{-1}}_{=I})\wurzel{D}S [/mm] =  [mm] S^{-1} \wurzel{D}^2 [/mm] S$.

Viele Grüße
Stefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de