www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte berechnen
Eigenwerte berechnen < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte berechnen: Frage
Status: (Frage) beantwortet Status 
Datum: 17:54 Mo 14.03.2005
Autor: Snulix

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo Leute, ich bitte euch mir zu helfen! schreibe morgen ne LA klausur und komme mit einem noch gar nicht zurecht.

[mm] \pmat{ -1 & -2 & 1 \\ 2 & 3 & -1 \\ -1 & -1 & 1} [/mm]

falls es nicht angezeigt wird:

-1  -2  1
2   3  -1
-1  -1  1

wie kommt man hier denn auf die eigenwerte (1- [mm] \lambda)³ [/mm] ???

kann ich, bevor ich z.B. -1- [mm] \lambda [/mm] und 3- [mm] \lambda [/mm] und 1- [mm] \lambda [/mm] schreibe, eine dreiecksmatrix daraus machen? oder darf man das nicht?

wie kann man hier schritt für schritt vorgehen?

Würde mich super doll über eine baldige antwort freuen...

ich grüße euch!

        
Bezug
Eigenwerte berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 Mo 14.03.2005
Autor: Karl_Pech

Hi,

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
> Hallo Leute, ich bitte euch mir zu helfen! schreibe morgen
> ne LA klausur und komme mit einem noch gar nicht zurecht.
>  
> [mm]\pmat{ -1 & -2 & 1 \\ 2 & 3 & -1 \\ -1 & -1 & 1} [/mm]
>  
> falls es nicht angezeigt wird:
>  
> -1  -2  1
>   2   3  -1
>  -1  -1  1

Wie Du schon richtig bemerkt hast, mußt Du zuerst von jedem Diagonaleintrag das [mm] $\lambda$ [/mm] abziehen. Damit erhälst Du dann
folgende Determinantenfunktion, die Du gleich Null setzen mußt.

[m] \vmat{ -1 - \lambda & -2 & 1 \\ 2 & 3 - \lambda & -1 \\ -1 & -1 & 1 - \lambda }[/m]

Diese Determinante kannst Du z.B. mit der Cramerschen Regel berechnen, oder indem Du nach einer Spalte/Zeile entwickelst. Schau im Internet mal nach der Cramerschen Regel oder generell nach Determinanten

Gruß
Karl



Bezug
        
Bezug
Eigenwerte berechnen: Diagonalmatrix
Status: (Antwort) fertig Status 
Datum: 18:47 Mo 14.03.2005
Autor: tu-kl

Hallo

Du kannst auch gerne eine Diagonalmatrix daraus machen, wenn du es über einen Basiswechsel machst. (nicht Gauß,......!) Der Ganze auffwand lohnt aber nicht! einfach t*Einheitsmatrix-(Deine Matrix) ausrechenen, Charakteristische Funktion bestimmen (d.h. Determinate = 0 setzen!) Die Gelichung hat logischerweise 3 Lösungen (da t hoch 3 auftritt), und damit hast du die Eigenwerte (bei größeren Matritzen hast du dann auch eine andere Zahl von Eigenwerten).

Gruß

Bezug
        
Bezug
Eigenwerte berechnen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:49 Di 15.03.2005
Autor: Snulix

danke leute, hat leider alles nix gebracht....

war nur ein klitzekleiner bruchteil an eigenwerten der dran kam.
voll verhauen.. naja ;)

grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de