www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte berechnen
Eigenwerte berechnen < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:03 Mo 20.05.2013
Autor: Schokokuchen

Aufgabe
Sei A [mm] \in \IR^{n \times n} [/mm] mit Eigenwerten [mm] \lambda_i, [/mm] i=1,...n und zugehörigen Eigenvektoren [mm] v_i. [/mm] Sei k [mm] \in [/mm] {1,...,n} fest gewählt, so dass die Vielfachheit von [mm] \lambda_k [/mm] eins ist und wir betrachten einen Vektor x [mm] \in \IR^n [/mm] mit [mm] x^t v_k=1. [/mm] Wir definieren die Matrix [mm] B=A-\lambda_k v_k x^t [/mm]

a)Zeige, dass B die Eigenwerte [mm] \lambda_1,...,\lambda_{k-1},0,\lambda_{k+1},...\lambda_n [/mm] und die Eigenvektoren [mm] w_1,...,w_{k-1},v_k,w_{k+1},...w_n [/mm] besitzt.

b)Finde die Eigenvektoren [mm] w_i [/mm] bezüglich [mm] v_i. [/mm]

Wegen [mm] det(B)=det(A-\lambda_k v_k x^t)=det(A-A v_k x^t)=det(A(I-v_k x^t)) =det(A)*det(I-v_k x^t)=0 [/mm]

sieht man, dass B die Eigenwerte [mm] \lambda_1,...,\lambda_n [/mm] hat. Aber mir ist nicht klar, warum der k-te EW Null ist?



        
Bezug
Eigenwerte berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:50 Di 21.05.2013
Autor: fred97


> Sei A [mm]\in \IR^{n \times n}[/mm] mit Eigenwerten [mm]\lambda_i,[/mm]
> i=1,...n und zugehörigen Eigenvektoren [mm]v_i.[/mm] Sei k [mm]\in[/mm]
> {1,...,n} fest gewählt, so dass die Vielfachheit von
> [mm]\lambda_k[/mm] eins ist und wir betrachten einen Vektor x [mm]\in \IR^n[/mm]
> mit [mm]x^t v_k=1.[/mm] Wir definieren die Matrix [mm]B=A-\lambda_k v_k x^t[/mm]
>  
> a)Zeige, dass B die Eigenwerte
> [mm]\lambda_1,...,\lambda_{k-1},0,\lambda_{k+1},...\lambda_n[/mm]
> und die Eigenvektoren [mm]w_1,...,w_{k-1},v_k,w_{k+1},...w_n[/mm]
> besitzt.
>  
> b)Finde die Eigenvektoren [mm]w_i[/mm] bezüglich [mm]v_i.[/mm]
>  Wegen [mm]det(B)=det(A-\lambda_k v_k x^t)=det(A-A v_k x^t)=det(A(I-v_k x^t)) =det(A)*det(I-v_k x^t)=0[/mm]


Warum ist das =0   ??????


>  
> sieht man, dass B die Eigenwerte [mm]\lambda_1,...,\lambda_n[/mm]
> hat.




Ich sehe das daraus nicht !



>  Aber mir ist nicht klar, warum der k-te EW Null ist?

Nachrechnen: [mm] Bv_k=0. [/mm]

FRED

>
>  


Bezug
                
Bezug
Eigenwerte berechnen: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:49 Di 21.05.2013
Autor: Schokokuchen


> > b)Finde die Eigenvektoren [mm]w_i[/mm] bezüglich [mm]v_i.[/mm]
> >  Wegen [mm]det(B)=det(A-\lambda_k v_k x^t)=det(A-A v_k x^t)=det(A(I-v_k x^t)) =det(A)*det(I-v_k x^t)=0[/mm]

>  
> Warum ist das =0   ??????
>  
> > sieht man, dass B die Eigenwerte [mm]\lambda_1,...,\lambda_n[/mm]
> > hat.
>  
> Ich sehe das daraus nicht !

Ja, das war Unsinn. Es hätten natürlich die Nullstellen des charakteristischen Polynoms berechnet werden sollen.
Also [mm] det(B-\lambda I)=det(A-\lambda_k v_k x^t-\lambda I)=det(A-Av_k x^t-\lambda [/mm] I)=...
Mh, wenn man wüsste, dass A invertierbar wäre, könnte man
[mm] det(A(I-v_k x^t-A^{-1}\lambda [/mm] I))=det(A)*det(I- [mm] v_k x^t-A^{-1}\lambda [/mm] I) schreiben. So weiß ich allerdings nicht weiter. Kannst du mir da noch einen Tip geben?

> Nachrechnen: [mm]Bv_k=0.[/mm]

Danke.
[mm] Bv_k=(A-\lambda_k v_k x^t)v_k=Av_k-\lambda_k v_k x^t v_k=Av_k-\lambda_k v_k=Av_k-Av_k=0 [/mm]

[mm] Bv_k=0=0v_k [/mm]  also ist 0 Eigenwert von B mit Eigenvektor [mm] v_k [/mm]


Bezug
                        
Bezug
Eigenwerte berechnen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Fr 24.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de