www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - Eigenwerte einer Matrix
Eigenwerte einer Matrix < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte einer Matrix: Bedeutung negativer Eigenwerte
Status: (Frage) beantwortet Status 
Datum: 23:42 Mo 17.05.2010
Autor: Rubik

Aufgabe
Hallo zusammen,

ich habe gerade einige Aufgaben geübt und Eigenwerte von 3x3 Matrizen gerechnet. Einige Eigenwerte sind positiv definit, einige negativ bzw. weitere haben einen imaginären Anteil.

Meine Fragen, welche Bedeutung haben diese Aussagen
a) eigenwerte positiv definit
b) eigenwerte negativ
Wozu werden diese Aussagen benötigt? Was kann ich mir darunter vorstellen?
Gibt es einen praktischen Einsatzbeispiel?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Eigenwerte einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 01:16 Di 18.05.2010
Autor: Blech

Hi,

> Meine Fragen, welche Bedeutung haben diese Aussagen
>  a) eigenwerte positiv definit

Eigenwerte sind nicht positiv definit, *Matrizen* sind positiv definit.

Eine Matrix ist positiv definit, wenn alle Eigenwerte positiv sind. Anschaulich, aber impräzise, heißt das, daß die Matrix nicht dreht und nicht spiegelt sondern nur verzerrt.

Man kann eine symmetrische, positiv definite Matrix A als Skalarprodukt verwenden $<x,y>_A=x^tAy$ anstatt des Standardskalarprodukts $<x,y>=x^ty$. (Wäre es nicht positiv definit, würde die induzierte Norm [mm] $\|x\|_A=_A$ [/mm] spinnen)

Auch kann man eine symmetrisch positiv semi-definite Matrix als Kovarianzmatrix hernehmen (die Definitheit braucht man hier, um zu verhindern, daß negative Varianzen auftauchen)

Die Definitheit der Hessematrix sagt Dir, ob Du ein Minimum, ein Maximum oder einen Sattelpunkt hast. Und das ganze taucht auch bei Differentialgleichungen und der Konvergenz einiger anderer Verfahren auf. Wobei ich ehrlich zugeben muß, daß sie einem zwar immer wieder über den Weg läuft, aber mir im Moment keine anderen durchschlagenden Anwendungen einfallen.

ciao
Stefan

Bezug
                
Bezug
Eigenwerte einer Matrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:51 Di 18.05.2010
Autor: Rubik

Danke Stefan!
Du hast recht Matrizen sind positiv definit nicht Eigenwerte. Es waren wohl gestern zu viele Rechnungen.
Wenn ich jetzt eine Differentialgleichung habe in der negative oder imaginäre Eigenwerte vorkommen, bedeutet das dass die Stabilität bzw. Lösbarkeit nur bedingt möglich ist? Gibt es da ein Beispiel aus der Technik (Grafikrechnungen etc.)?

Ich glaube bei diesem Thema bin ich etwas abgehoben, allerdings interessieren tut mich jetzt das noch.

Bezug
                        
Bezug
Eigenwerte einer Matrix: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:39 Mi 19.05.2010
Autor: Rubik

Hat jemand noch eine Idee, können meine Annahmen bestätigt werden?

Bezug
                        
Bezug
Eigenwerte einer Matrix: Antwort
Status: (Antwort) fertig Status 
Datum: 09:19 Do 20.05.2010
Autor: Niladhoc

Hallo,

Sätze über Lösbarkeit von DGL-systemen mit Eigenwerten von Matrizen sind mir nicht bekannt, man kann anhand dieser jedoch stationäre Lösungen von DGL-systemen beurteilen und klassifizieren, hier ein Link dazu für
[]2 Dimensionen.
[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
                
Bezug
Eigenwerte einer Matrix: Korrekturmitteilung
Status: (Korrektur) kleiner Fehler Status 
Datum: 07:41 Mi 19.05.2010
Autor: angela.h.b.


> Eine Matrix ist positiv definit, wenn alle Eigenwerte
> positiv sind.

Hallo,

i.a. stimmt das nicht.
Die Aussage ist aber richtig für symmetrische Matrizen.

Gruß v. Angela


Bezug
                        
Bezug
Eigenwerte einer Matrix: Korrekturmitteilung
Status: (Korrektur) richtig (detailiert geprüft) Status 
Datum: 12:14 Mi 19.05.2010
Autor: Blech

Hi,

da hast Du absolut recht. Ich war in Gedanken gerade bei Skalarprodukten und Steifigkeitsmatrizen. =)

ciao
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de