www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte und EV
Eigenwerte und EV < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte und EV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:46 Mo 22.06.2009
Autor: Unk

Aufgabe
Sei [mm] v_1,...,v_4 [/mm] Basis eines reellen Vektorraums.
[mm] f:V\rightarrow [/mm] V mit [mm] f(v_i)=v_{i+1} [/mm] für [mm] 1\leq i\leq [/mm] 3 und [mm] f(v_4)=1. [/mm]

Bestimme alle Eigenwerte und Eigenvektoren.

Hallo,

mal eine kurze, übersichtlichere Aufgabe.
Für Eigenwerte brauche ich das charakteristische Polynom.
Wenn ich die Darstellungsmatrix meiner Basis betrachte, so erhalte ich:
[mm] M=(v_2,v_3,v_4,v_1). [/mm]
Doch wie komme ich nun näher an meine Eigenwerte?
Ich berechne eigtl. [mm] det(\lambda [/mm] E-M). Das geht aber hier so schlecht oder?
Wo liegt der Knackpunkt?

        
Bezug
Eigenwerte und EV: Antwort
Status: (Antwort) fertig Status 
Datum: 00:22 Di 23.06.2009
Autor: leduart

Hallo
Nimm doch einfach den [mm] \IR^4 [/mm] mit der Standardbasis als Repraesentant von V dann ist es ganz einfach.
gruss leduart

Bezug
                
Bezug
Eigenwerte und EV: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:30 Di 23.06.2009
Autor: Unk


> Hallo
>  Nimm doch einfach den [mm]\IR^4[/mm] mit der Standardbasis als
> Repraesentant von V dann ist es ganz einfach.
>  gruss leduart

Ja daran hatte ich auch schon gedacht. Aber darf man das so einfach. Dann bekomme ich doch Eigenwerte heraus die nur für meine kanonische Basis gelten oder? Andererseits müsste ja jeder Darstellungsmatrix bzgl einer anderen Basis zu meiner Matrix M ähnlich sein, also das gleiche charakteristische Polynom habe. Womit meine obige Frage mit Nein beantwortet werden könnte oder?
Muss man das Ergebnis bzgl. der kanonischen Basis noch irgendwie verallgemeinern?

Bezug
                        
Bezug
Eigenwerte und EV: Antwort
Status: (Antwort) fertig Status 
Datum: 02:56 Di 23.06.2009
Autor: pelzig

Also die Darstellungsmatrix von f bezüglich der Basis [mm] $\{v_i\}_{1\le i\le 4}$ [/mm] ist [mm] $$\pmat{0&0&0&1\\1&0&0&0\\0&1&0&0\\0&0&1&0}$$ [/mm] Jetzt rechne einfach davon erstmal die Eigenwerte und Eigenvektoren aus. Dass man das so machen kann, lässt sich so erklären:

Nach Wahl der Basis [mm] $\{v_1,v_2,v_3,v_4\}$ [/mm] hast du V und [mm] $\IR^4$ [/mm] kanonisch durch die lineare Abbildung [mm] $\Phi(v_i):=e_i$ [/mm] identifiziert. Es gibt genau eine lineare Abbildung [mm] $A:\IR^4\to\IR^4$ [/mm] mit [mm] $f=\Phi^{-1}\circ A\circ\Phi$ [/mm] (nämlich [mm] $A:=\Phi\circ f\circ\Phi^{-1}$ [/mm] :-)) und damit gilt, weil [mm] $\Phi$ [/mm] linear [mm] ist$$A(v)=\lambda v\gdw f(\Phi^{-1}(v))=\lambda\Phi^{-1}(v)$$ [/mm] Damit haben  wir gezeigt: [mm] \lambda [/mm] ist genau dann Eigenwert von A, wenn [mm] \lambda [/mm] einer von f ist und v ist genau dann Eigenvektor von A, wenn [mm] $\Phi^{-1}(v)$ [/mm] einer von f ist.

Gruß, Robert

Bezug
        
Bezug
Eigenwerte und EV: Antwort
Status: (Antwort) fertig Status 
Datum: 07:22 Di 23.06.2009
Autor: fred97


> Sei [mm]v_1,...,v_4[/mm] Basis eines reellen Vektorraums.
>  [mm]f:V\rightarrow[/mm] V mit [mm]f(v_i)=v_{i+1}[/mm] für [mm]1\leq i\leq[/mm] 3 und
> [mm]f(v_4)=1.[/mm]
>  
> Bestimme alle Eigenwerte und Eigenvektoren.
>  Hallo,
>  
> mal eine kurze, übersichtlichere Aufgabe.
>  Für Eigenwerte brauche ich das charakteristische Polynom.
>  Wenn ich die Darstellungsmatrix meiner Basis betrachte, so
> erhalte ich:
>  [mm]M=(v_2,v_3,v_4,v_1).[/mm]
>  Doch wie komme ich nun näher an meine Eigenwerte?
>  Ich berechne eigtl. [mm]det(\lambda[/mm] E-M). Das geht aber hier
> so schlecht oder?
>  Wo liegt der Knackpunkt?


Mach es so wie pelzig es vorgeschlagen hat, oder geh einfach auf die Def. zurück:

Sie  [mm] \lambda [/mm] ein Eigenwert und v ein zugehöriger Eigenvektor, also

                $v [mm] \not=0 [/mm] $ und $v = [mm] \alpha_1v_1+ \alpha_2v_2+ \alpha_3v_3+ \alpha_4v_4$ [/mm]


Aus [mm] $f(v)=\lambda [/mm] v$ folgt dann:

              $ [mm] \alpha_4 =\lambda \alpha_1, \alpha_1 =\lambda \alpha_2, \alpha_2 =\lambda \alpha_3, \alpha_3 =\lambda \alpha_4$ [/mm]

Hieraus folgt dann:

             [mm] $\alpha_4 \not=0$ [/mm] und [mm] $\alpha_4 [/mm] = [mm] \lambda \alpha_1= \lambda^2 \alpha_2= \lambda^3 \alpha_3= \lambda^4 \alpha_4$ [/mm]

folglich: [mm] $\lambda= \pm1$ [/mm]

Für [mm] $\lambda [/mm] = 1$ ergibt sich $v = [mm] v_1+v_2+v_3+v_4$ [/mm]

Für [mm] $\lambda [/mm] = -1$ ergibt sich $v = [mm] v_1-v_2+v_3-v_4$ [/mm]


FRED



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de