www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Eigenwerte" - Eigenwerte unitärer Matizen
Eigenwerte unitärer Matizen < Eigenwerte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eigenwerte unitärer Matizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:18 So 03.10.2004
Autor: MAOAM

Hallo Forum,

ich habe hier noch eine Frage bei der ich alleine nicht weiterweiss:

warum hat eine unitäre Matrix nur Eigenwerte $ = [mm] \pm [/mm] 1$ ?

eine mögliche Antwort ist dass diese alle auf dem Einheitskreis der komplexen Zahlenebene liegen....mit der ich aber nichts anzufangen weiss.

Schon mal vielen Dank, Sergej
und
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Eigenwerte unitärer Matizen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:18 So 03.10.2004
Autor: Irrlicht

Hallo Maoam,

Wenn du weisst, dass unitäre Matrizen die Norm erhalten, d.h. ||Ax|| = ||x||, dann folgt daraus direkt, dass alle Eigenwerte von A den Betrag 1 haben müssen (setze für x einen Eigenvektor zum Eigenwert [mm] \lambda [/mm] ein und du erhältst [mm] |\lambda| [/mm] = 1 ist), also auf dem Einheitskreis liegen. Die einzigen reellen Zahlen auf dem Einheitskreis sind +1 und -1.

Eine unitäre Matrix ist für komplexe Koeffizienten definiert und zwar durch die Eigenschaft, [mm] $A^{-1} [/mm] = [mm] \bar{A}^t$. [/mm] Hat die Matrix nur reelle Koeffizienten, dann heisst die entsprechende Eigenschaft [mm] $A^{-1} [/mm] = [mm] A^t$, [/mm] dass die Matrix orthogonal ist. Jede orthogonale Matrix (also mit reellen Koeffizienten) ist unitär und ihre reellen Eigenwerte sind nur +1 und -1.
Eine orthogonale Matrix kann aber auch komplexe Eigenwerte haben, die ungleich [mm] \pm [/mm] 1 sind, z.B.  
[mm] $\pmat{ 0 & 1 \\ -1 & 0 }$ [/mm]

Liebe Grüsse,

Irrlicht

Bezug
                
Bezug
Eigenwerte unitärer Matizen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:57 Mo 04.10.2004
Autor: MAOAM

danke für die Info, Irrlicht.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Eigenwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de