www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Eind. + Ex. schwacher Lsg
Eind. + Ex. schwacher Lsg < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eind. + Ex. schwacher Lsg: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:04 So 28.10.2018
Autor: Noya

Aufgabe
Sei [mm] \Omega \subset \IR^n [/mm] ein beschränktes Gebiet. Außerdem seien [mm] \omega \subset \Omega [/mm] offen sowie [mm] \Gamma_0 \subset \partial\Omega [/mm] mit [mm] |\omega| \not= [/mm] 0 und [mm] |\Gamma_0| \not= [/mm] 0. Beweise Existenz und Eindeutigkeit einer schwachen Lösung zu den folgenden PDEs
a)
[mm] \begin{cases} -\Delta y+ \chi_{\omega}y=u \mbox{ in} \Omega \\ \partial_{\nu}y=0 \mbox{ auf} \partial \Omega \end{cases} [/mm]

b)
[mm] \begin{cases} -\Delta y=u \mbox{ in} \Omega \\ \partial_{\nu}y=0 \mbox{ auf} \Gamma_1 \\ y=0 \mbox{ auf} \Gamma_0:=\partial\Omega\backslash \Gamma_1 \end{cases} [/mm]

Hier bezeichnet [mm] \chi_\omega [/mm] : [mm] \Omega \to \IR [/mm] die charakteristische Funktion von [mm] \omega. [/mm]

Hallo ihr Lieben,

zuerst einmal die Aussagen aus unserer Mitschrift:

Definition:
Eine Funktion [mm] y\in H^1_0(\Omega) [/mm] heißt schwache Lösung zu
[mm] (\*)\begin{cases} -\Delta y=u \mbox{ in} \Omega \\ y=0 \mbox{ auf} \partial \Omega \end{cases} [/mm]
falls y die schwache Formulierung von [mm] (\*) [/mm]
[mm] \int_{\Omega} \nabla [/mm] y [mm] \nabla [/mm] v dx = [mm] \int_{\Omega} [/mm] uv dx [mm] \forall [/mm] v [mm] \in H^1_0(\Omega) [/mm] löst.


Satz:
Es sei [mm] \Omega \in \IR^n [/mm] offen und beschränkt. Dann existiert zu jedem u [mm] \in L^2(\Omega) [/mm] genau eine schwache Lösung y [mm] \in H^1_0(\Omega) [/mm] zu
[mm] \begin{cases} -\Delta y=u \mbox{ in} \Omega \\ y=0 \mbox{ auf} \partial \Omega \end{cases}. [/mm]

Zudem existiert eine von y und u unabhängige Konstante [mm] \lambda [/mm] >0, s.d gilt
[mm] ||y||_{H^1(\Omega)} \le \bruch{1}{\lambda}||y||_{L^2(\Omega)} [/mm]


Um die schwache Formulierung von a) zu erhalten, multiplizieren wir a) mit einer geeigneten testfunktion v [mm] \in C^{\infty}_0(\Omega) [/mm] und integrieren die resultierende Gleichung über [mm] \Omega [/mm] :

[mm] \int_{\Omega} (-\Delta [/mm] y+  [mm] \chi_\omega [/mm] y )v dx= [mm] \int_{\Omega} [/mm] uv dx

und partielle Integration liefert dann die schwache Formulierung. Hier weiß ich nicht genau wie es weitergeht, da ich Probleme mit der Indikatorfunktion habe. Ist mit [mm] \chi_\omega [/mm] y = [mm] \chi_\omega [/mm] (y) gemeint, also

[mm] \chi_\omega(y) [/mm] = [mm] \begin{cases} 1, & \mbox{für } y \in \omega \\ 0, & \mbox{für } y \notin \omega \end{cases} [/mm]

(PI : [mm] \int [/mm] f [mm] \cdot [/mm] g' = f [mm] \cdot [/mm] g - [mm] \int [/mm] f' [mm] \cdot [/mm] g)

bei
[mm] (\*)\begin{cases} -\Delta y=u \mbox{ in} \Omega \\ y=0 \mbox{ auf} \partial \Omega \end{cases} [/mm]
ist mir klar wie es läuft und dort ist ja quasi ( f= [mm] \Delta [/mm] y und g'=v und [mm] v\in C^{\infty}_0 [/mm] und verschweindet auf dem Rand, s.d. hier gilt [mm] \int [/mm] f [mm] \cdot [/mm] g' =- [mm] \int [/mm] f' [mm] \cdot [/mm] g woraus dann die schwache Formulierung [mm] \int_{\Omega} \nabla [/mm] y [mm] \nabla [/mm] v dx = [mm] \int_{\Omega} [/mm] uv dx [mm] \forall [/mm] v [mm] \in H^1_0(\Omega) [/mm] folgt)

in a) wäre ja f= v und g'=  [mm] -\Delta [/mm] y+ [mm] \chi_{\omega}y [/mm]  
nur wie bilde ich g (insb im Hinblick auf [mm] \chi_{\omega}y [/mm] )

ich möchte gerne die schwache Formulierung finden und das y finden, dass die schwache formulierung löst und somit schwache Lösung von a) ist (nach Def). Und nach dem Satz weiß ich doch dann, dass die eindeutig ist oder muss ich das dann auch noch zeigen?

Oder bin ich gerade total auf dem Holzweg?


Vielen Dank ihr Lieben,

grüße Noya


        
Bezug
Eind. + Ex. schwacher Lsg: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:22 Di 30.10.2018
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de