www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Eindeutigkeit von DGL
Eindeutigkeit von DGL < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eindeutigkeit von DGL: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:15 Mi 19.10.2005
Autor: bfe

Hallo,

in einem Vortrag soll ich u.a. die Existenz und Eindeutigkeit des Eingeschräkten Dreikörperproblems zeigen. Da Analysis bisher nicht meine Stärke war, hab ich damit große Probleme, bzw. mir fehlt die zündende Idee.

Ich weiß, dass ich mich des Satzes von Picard-Lindelöf bedienen muss. Ich muss also zeigen:

[mm] \exists L>0 : ||f(t,x_a)-f(t,x_b)|| \le L \cdot ||x_a-x_b|| [/mm]

für das Anfangswertproblem

[mm] f(x)=x'=\begin{pmatrix} x_3 \\ x_4 \\ x_1 + 2x_4-\frac{(1-\mu)(x_1+\mu)}{r_{13}^3}-\frac{\mu(x_1+\mu-1)}{r_{23}^3} \\ x_2 - 2x_3-\frac{x_2(1-\mu)}{r_{13}^3}-\frac{\mu x_2}{r_{23}^3} \end{pmatrix} \qquad, x(t_0)=x_0[/mm]

mit

[mm] r_{13}=\wurzel{(x_1+\mu)^2+x_2^2} [/mm] und [mm] r_{23}=\wurzel{(1+\mu-x_1)^2+x_2^2} [/mm]

Und da hänge ich fest und finde keinen Anfang.
Ich weiß noch, dass die [mm]r[/mm](also die Abstände) immer positiv sind, [mm]0<\mu<1[/mm] und dass ich ich vorher ein Intervall bzw. eine Epsilon-Umgebung festlegen muss, in dem/der die Lipschitz-Bedingung erfüllt ist bzw. erfüllt sein soll. Wahrscheinlich muss ich die Normen in Picard-Lindelöf abschätzen. Aber wie?

Herzlichen Dank schon mal im Vorraus,

Matthias

        
Bezug
Eindeutigkeit von DGL: Antwort
Status: (Antwort) fertig Status 
Datum: 10:20 Do 20.10.2005
Autor: MatthiasKr

Hallo Matthias,

verstehe ich das richtig, dass du LOKALE existenz und eindeutigkeit für diese dgl zeigen musst?

In diesem fall ist es wohl einfacher, statt der lipschitzstetigkeit der funktion die stetige differenzierbarkeit zu zeigen. denn dann hast du zumindest auf einer umgebung von [mm] $(t_0,x_0)$ [/mm] auch lipschitzstetigkeit.
dass die funktion $f$ stetig diffbar ist, da die $r$-Werte positiv sind, aber recht leicht zu zeigen, oder?

Viele Grüße
Matthias



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de