www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - Einheiten von [mm]\IZ[i][/mm]
Einheiten von [mm]\IZ[i][/mm] < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einheiten von [mm]\IZ[i][/mm]: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 Do 22.06.2006
Autor: MartinMaier

Aufgabe
Betrachten Sie die Teilmenge der komplexen Zahlen
[mm] \IZ[i]:=\{a+bi | a,b \in \IZ\}[/mm]
und definieren Sie die Addition und Multiplikation in [mm]\IZ[i][/mm] analog zu den entsprechenden Verknüpfungen in [mm]\IC[/mm]. Damit ist [mm]\IZ[i][/mm] ein kommutativer Ring.
Bestimmen Sie die Einheiten von [mm]\IZ[i][/mm].
Zerlegen Sie die Zahl 2 in ein nicht-triviales Produkt von Zahlen, die auf dem Einheitsquadrat in [mm]\IC[/mm] liegen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Zur Bestimmung der Einheiten hat man folgende Gleichung:
[mm](a+bi)(c+di)=1[/mm]
Daraus ergibt sich aber lediglich:
[mm]ac-bd=1[/mm] und [mm]ad+bc=0[/mm].
Das ist aber zu wenig für 4 Variable. Gibt es noch eine andere Gleichung, die man heranziehen könnte oder übersehe ich da etwas?

Wie steht's mit dem zweiten Fall? Was kann man über Zahlen, die in [mm]\IC[/mm] auf dem Einheitsquadrat liegen, sagen?

Ich bin dankbar für Ideen und Lösungen.

        
Bezug
Einheiten von [mm]\IZ[i][/mm]: Tipp
Status: (Antwort) fertig Status 
Datum: 21:16 Do 22.06.2006
Autor: Jan_Z

Hallo,
1) zur Bestimmung deiner Einheiten:
Du hast doch noch die Information, dass die Zahlen aus [mm] $\mathbb{Z}[i]$ [/mm] von der Form $a+bi$ mit [mm] $a,b\in\mathbb{Z}$ [/mm] sind. Du weißt doch, was die Einheiten von [mm] $\mathbb{Z}$ [/mm] sind, oder? Welche würdest du vermuten, kommen noch in [mm] $\mathbb{Z}[i]$ [/mm] dazu? Es sind nicht mehr viele... ;-)
2) Die Zahlen auf dem Einheitsquadrat sind die, bei denen Imaginärteil oder Realteil =1 sind.
Viele Grüße,
Jan

Bezug
                
Bezug
Einheiten von [mm]\IZ[i][/mm]: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:51 Do 22.06.2006
Autor: MartinMaier

Kann es sein, dass die Aufgabe ganz einfach ist?!?
Also als Einheiten habe ich nun gefunden:
[mm]1,-1,i,-i[/mm]
Ist das soweit richtig?
Und die 2 kann man doch einfach so zerlegen:
[mm] 2=(1+i)(1-i)[/mm]
???
Wenn das alles soweit stimmt, danke für die Hilfe (aber auch sonst...:))

Bezug
                        
Bezug
Einheiten von [mm]\IZ[i][/mm]: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 Do 22.06.2006
Autor: Hanno

Hallo.

Ja, das ist so richtig [ok].


Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de