www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Einheitskreis
Einheitskreis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einheitskreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:57 Sa 21.05.2011
Autor: folken

Aufgabe
Ein Punkt wird zufällig im Einheitskreis (Kreis mit Radius 1 und Mittelpunkt im Ursprung) gewählt (gemäß der Gleichverteilung). X sei seine x-Koordinate Y sein mit der positiven x-Achse eingeschlossener Winkel. Sind X und Y unabhängig? Beweisen Sie Ihre Antwort.

Hallo,

mir ist klar, das diese abhängig sind. Ich vermute mal das man das mit sinus und cosinus zeigen muss. Ich verstehe nur nicht wie ich beim Beweis hier vorgehen soll.


Gruß folken

        
Bezug
Einheitskreis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:16 Sa 21.05.2011
Autor: Teufel

Hi!

Vielleicht kann man das so machen:
Guck dir mal $P(X>0, [mm] -\frac{\pi}{2}0)*P(-\frac{\pi}{2}
Nun rechne aber mal $P(X>0, [mm] -\pi0|-\frac{\pi}{2}
(wahlweise kannst du die Winkel natürlich alle noch so zurechtstutzen, dass sie zwischen 0 und [mm] 2*\pi [/mm] liegen)

Bezug
                
Bezug
Einheitskreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:52 Sa 21.05.2011
Autor: folken

Danke erstmal für die schnelle Antwort,

> Hi!
>  
> Vielleicht kann man das so machen:
>  Guck dir mal [mm]P(X>0, -\pi
> unabhängig, so müsste das
> [mm]=P(X>0)*P(-\pi
> sein (X ist ja gleichverteilt auf [mm][-1,1][/mm], Y ist
> gleichverteilt auf [mm][-\pi,\frac{3}{2}*\pi][/mm]).
>  
> Nun rechne aber mal [mm]P(X>0, -\pi0|-\pi
> aus.

Hier verstehe ich nicht, wie ich das ausrechnen soll:
[mm] P(X>0|-\pi im Zähler denn Schnitt berechnen, da weiss ich nicht wie man das ausrechnen soll.
Weiter verstehe ich nicht, in welcher Hinsicht, das dann ein Beweis wäre.

>  
> (wahlweise kannst du die Winkel natürlich alle noch so
> zurechtstutzen, dass sie zwischen 0 und [mm]2*\pi[/mm] liegen)

Warum kann ich nicht gleich Y von 0 bis [mm] 2\pi [/mm] laufen lassen statt von [mm] -\pi [/mm]
bis [mm] \pi. [/mm]

Bezug
                        
Bezug
Einheitskreis: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 Sa 21.05.2011
Autor: Teufel

Hi!

Ich habe das Intervall nur so komisch gewählt, um den Schreibaufwand etwas zu verringern. Wenn man Y in [mm] [0,2\pi] [/mm] laufen lässt, du müsste ich das Ereignis [mm] \{-\frac{\pi}{2} Ich sehe auch gerade, dass ich statt [mm] \frac{\pi}{2} [/mm] überall nur [mm] \pi [/mm] geschrieben habe, werde ich gleich ändern!

Auf alle Fälle gilt doch:
$ [mm] P(X>0|-\frac{\pi}{2}

Bezug
                                
Bezug
Einheitskreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:34 Sa 21.05.2011
Autor: folken

Ich stelle mich wahrscheinlich gerade etwas dumm an, aber ich verstehe immer noch nicht, warum mir das zeigt, dass die beiden variablen voneinander abhängig sein müssen. Ich sehe auch noch nicht den Zusammenhang, was das mit dem ersten Teil, wo wir [mm] \bruch{1}{4} [/mm] rausbekommen haben zu tun hat. Es wäre toll wenn du mir nur noch das erklären könntest.

Bezug
                                        
Bezug
Einheitskreis: Antwort
Status: (Antwort) fertig Status 
Datum: 21:39 Sa 21.05.2011
Autor: Teufel

Ah ok!

Also 2 Zufallsvariablen X und Y sind doch genau unabhängig, wenn für alle Mengen A, B aus ihrem Wertebereich gilt:

[mm] $P(X\in [/mm] A, [mm] Y\in [/mm] B)=P(X [mm] \in [/mm] A)*P(Y [mm] \in [/mm] B)$.

Für deine Aufgabe habe ich A und B konkret gewählt und ich wollte dann einfach mal beide Seiten vergleichen. Auf der rechten Seite kam [mm] \frac{1}{4} [/mm] raus. Wenn auf der linken etwas anderes rauskommen würde, so würde das schon zeigen, dass X und Y nicht unabhängig sein können!

Du kannst die linke Seite auch ohne die bedingte Wahrscheinlichkeit ausrechnen, wenn du willst. Beachte dazu einfach, dass gilt:
$X>0 [mm] \gdw Y\in [-\frac{\pi}{2},\frac{\pi}{2}]$. [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de