www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Einschließungskriterium
Einschließungskriterium < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einschließungskriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 So 01.04.2012
Autor: fabian1991

Aufgabe
Bestimmen Sie mit Hilfe des Einschließungskriteriums den Grenzwert der Zahlenfolge :
[mm] a_{n}=\wurzel[n]{2^{n}+(\bruch{1}{2})^{n}} [/mm]

Also wenn ich das mit dem Einschließungskriterium richtig verstanden habe, muss ich die Folge so abändern, dass sie kleiner wird, man einen deutlich sichtbaren Grenzwert bekommt, nennen wir ihn X
und die Folge vergrößern, auch so dass sie einen deutlich sichtbaren Grenzwert bekommt, der ebenfalls X ist. und so hab ich dann X als Grenzwert. ist das richtig?
Wenn ich nun entweder die 2 oder 1/2 wegstreiche, dann die wurzel Ziehe, habe ich 1/2 bzw 2, je ncah dem was ich wegstreiche.
Das bedeutet doch, dass es klüger ist die [mm] (1/2)^{n} [/mm] wegzugstreichen und zu wissen, dass mein Grenzwert >2 ist?! Allerdings hab ich keine Idee, wie ich nach Oben hin abschätzen sollte..
Bräuchte mal Hilfe.
Grüße
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Einschließungskriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 18:38 So 01.04.2012
Autor: leduart

Hallo
hol mal 2 aus der wurzel, dann benutze [mm] 1/2^n>1/2^{2n} [/mm]
die andere Seite hast du schon richtig  mit [mm] a_n\ge [/mm] 2
Gruss leduart

Bezug
                
Bezug
Einschließungskriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:48 So 01.04.2012
Autor: fabian1991

Danke für die Antwort, aber wie meinsten das mit 2 aus der Wurzel holen?
Grüße

Bezug
                        
Bezug
Einschließungskriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 18:59 So 01.04.2012
Autor: leduart

Hallo
klammer in der wurzel [mm] 2^n [/mm] aus, dann kannst du 2 vor die wurtel schreiben, was bleibt unter der -wurzel? Das kannst du dann verkleinern und vergrößern.
Gruss leduart

Bezug
                                
Bezug
Einschließungskriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:32 So 01.04.2012
Autor: fabian1991

Auch wenn ich mich grad als absolut blöd hinstelle, aber wie kann ich da aus einer Wurzel was ausklammern?^^
grüße

Bezug
                                        
Bezug
Einschließungskriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 So 01.04.2012
Autor: schachuzipus

Hallo fabian1991,


> Auch wenn ich mich grad als absolut blöd hinstelle, aber
> wie kann ich da aus einer Wurzel was ausklammern?^^

[mm]\wurzel[n]{2^{n}+(\bruch{1}{2})^{n}}=\wurzel[n]{2^{n}+(\bruch{1}{2^n})}=\wurzel[n]{2^{n}\cdot{}\left(1+\bruch{1}{2^{2n}\right)}}[/mm]


>  grüße

Gruß

schachuzipus


Bezug
                                                
Bezug
Einschließungskriterium: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:31 So 01.04.2012
Autor: fabian1991

aaah und das kann ich jetzt wegstreichen, aus dem rest die wurzel ziehen un der Grenzwert ist 2?!
Grüße

Bezug
                                                        
Bezug
Einschließungskriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 So 01.04.2012
Autor: MathePower

Hallo fabian1991,

> aaah und das kann ich jetzt wegstreichen, aus dem rest die
> wurzel ziehen un der Grenzwert ist 2?!


So ist es.


>  Grüße


Gruss
MathePower

Bezug
        
Bezug
Einschließungskriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 10:56 Mo 02.04.2012
Autor: fred97

Allgemein, für 0 [mm] \le [/mm] a [mm] \le [/mm] b:

[mm] $b=\wurzel[n]{b^n} \le \wurzel[n]{a^n+b^n} \le \wurzel[n]{b^n+b^n}= \wurzel[n]{2}b$ [/mm]

Damit:  [mm] \wurzel[n]{a^n+b^n} \to [/mm] b  für n [mm] \to \infty [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de