www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathematik-Wettbewerbe" - Einstellungstest
Einstellungstest < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Einstellungstest: Brüche / Umstellung
Status: (Frage) beantwortet Status 
Datum: 19:51 Do 23.08.2007
Autor: SwEeT-AnGeLL

Aufgabe
U= b*I*v*z  ges z ( umstellen)
R= [mm] \bruch [/mm] R2 ( {U-F}){F} ges F
R= [mm] \bruch{R1*R2}{R1+R2} [/mm] ges R1
Z= [mm] \wurzel{R² + X²} [/mm]

Brüche

[mm] \bruch{15}{k} [/mm] - 3 + [mm] \bruch{7}{l} [/mm] =
18 : [mm] \bruch{24}{35} [/mm] =

Gleichungen

2,5 * (z+21) = 4,5* (7-z)
[mm] \bruch{2}{5} [/mm] = [mm] \bruch{3}{10} [/mm] + [mm] \bruch{3}{2x} [/mm]
[mm] \bruch{13z²}{5} [/mm] = 65




Hallo ich bin es wieder Luisa ich weiß das ihr diese Aufgaben wohl sehr leicht finden aber vl könnte mir jemand diese Aufgaben einmal erklären da diese Aufgaben bestimmt im Einstellungstest dran kommen und ich möchte gut darauf vorbereitet sein. Wäre euch wirklich sooo dankbar für eure Hilfe. Vielen Dank Luisa

        
Bezug
Einstellungstest: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Do 23.08.2007
Autor: Bastiane

Hallo SwEeT-AnGeLL!

> U= b*I*v*z  ges z ( umstellen)
>  R= [mm]\bruch[/mm] R2 ( {U-F}){F} ges F
>  R= [mm]\bruch{R1*R2}{R1+R2}[/mm] ges R1
>  Z= [mm]\wurzel{R² + X²}[/mm]

Das Prinzip ist immer das Gleiche: du hast eine Gleichung, das bedeutet, dass links und rechts vom Gleichheitszeichen das Gleiche steht. ;-) Und wenn du etwas änderst (addierst, multiplizierst, etc.), musst du es auf beiden Seiten genauso machen, damit die Gleichheit erhalten bleibt. Ist doch eigentlich logisch, oder?

Im ersten Fall könntest du also durch b dividieren, dann steht links: [mm] \frac{U}{b} [/mm] und rechts [mm] \frac{b*I*v*z}{b}=I*v*z. [/mm] Also als Gleichung: [mm] \frac{U}{b}=I*v*z. [/mm] Jetzt kannst du noch das Gleiche mit I und v machen, also dadurch dividieren, dann erhältst du: [mm] \frac{U}{b*I*v}=z [/mm] und schon bist du fertig.

Die anderen probierst du jetzt bitte selber.

> Brüche
>
> [mm]\bruch{15}{k}[/mm] - 3 + [mm]\bruch{7}{l}[/mm] =

Was soll denn hier gemacht werden? Jedenfalls ist es immer gut, alles auf denselben Nenner zu bringen. Da du k und l nicht kennst, wäre wohl der Hauptnenner das Produkt dieser beiden, denn es ist ja dann auf jeden Fall ein Vielfaches von beiden.

>  18 : [mm]\bruch{24}{35}[/mm] =

"Teilen" bedeutet "mit dem Kehrbruch multiplizieren". Also: [mm] 18:\frac{24}{35}=18*\frac{35}{24}, [/mm] und das schaffst du bestimmt (kürzen!). :-)

> Gleichungen
>  
> 2,5 * (z+21) = 4,5* (7-z)
>  [mm]\bruch{2}{5}[/mm] = [mm]\bruch{3}{10}[/mm] + [mm]\bruch{3}{2x}[/mm]
>  [mm]\bruch{13z²}{5}[/mm] = 65

Hier gilt das Gleiche wie oben: immer auf beiden Seiten das Gleiche machen. Probierst du's mal?

Viele Grüße
Bastiane
[cap]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de