www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Elementarmatrizen
Elementarmatrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elementarmatrizen: Bsp.
Status: (Frage) beantwortet Status 
Datum: 11:19 Sa 05.02.2005
Autor: Reaper

Hallo!
Frage wie zerlege ich eine Matrix in ein Produkt von Elementarmatrizen?
Bsp.:

$ [mm] \pmat{ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 } [/mm] in  [mm] (\IZ_{2})^{3}_{3} [/mm]
$
OK eins weiß ich ich muss die Matrix auf die Diagonalform bringen und mir die erforderlichen Elementarmatrizen notieren. Zeilenumformungen gehen ja noch aber wie mache ich Spaltenumformungen?
Ein Beispiel wäre hier sicherlich super
Sind dann das Produkt von Elementarmatrizen meine Notizen von den Elementarmatrizen?


.....Ach ja und danke dass meine restlichen Fragen so schnell beantwortet worden sind.



        
Bezug
Elementarmatrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:26 Sa 05.02.2005
Autor: Stefan

Hallo Reaper!

Das genaue Verfahren wird von Lars hier sehr schön beschrieben. Ich führe es für diesen konkreten Fall hier mal durch:

Wir haben die Matrix [mm] $\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ [/mm] und wollen diese durch elementare Zeilen- und Spaltenumformungen auf Diagonalgestalt bringen. Zeilenumformungen sind dabei Multiplikationen von links, Spaltenumformungen solche von rechts.

Zunächst müssen wir die erste Spalte zur zweiten addieren, um in der ersten Spalte und zweiten Zeile eine Null zu erzeugen. Das geschieht wie folgt:

[mm] $\begin{pmatrix} 1 & 0 & 0 \\ 1 &1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} [/mm] = [mm] \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$. [/mm]

Um nun in der zweiten Spalte und dritten Zeile eine Null zu erzeugen, machen wir folgendes (wie müssen die zweite und dritte Zeile addieren):

[mm] $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix} [/mm] = [mm] \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. [/mm]

So, und jetzt erzeugen wir durch Multiplikationen mit Elementarmatrizen von rechts (also elementaren Spaltenoperationen) auch Nullen oberhalb der Diagonalen. Es gilt (da wir die erste und dritte Spalte addieren müssen):

[mm] $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} [/mm] = [mm] \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. [/mm]

In einem letzten Schritt müssen wir nun noch die zweite und dritte Spalte addieren, und erhalten:

[mm] $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} [/mm] = [mm] \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, [/mm]

also die gewünschte Diagonalmatrix.

Insgesamt haben wir also:

[mm] $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}\cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} [/mm] = [mm] \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{pmatrix}$. [/mm]

Dies müssen wir nun nach [mm] $\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ [/mm] auflösen. Über [mm] $\IZ_2$ [/mm] sind die Elementarmatrizen aber zu sich selbst invers! Daher gilt einfach:

[mm] $\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} [/mm] =  [mm] \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}^{-1} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}^{-1} \cdot \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} [/mm] =  [mm] \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$. [/mm]

Dies ist das gewünschte Produkt aus Elementarmatrizen. :-)

Multipliziere es doch mal zur Probe aus und schaue, ob die Ausgangsmatrix wieder herauskommt. :-)

Viele Grüße
Stefan

Bezug
                
Bezug
Elementarmatrizen: Richtigkeit
Status: (Frage) beantwortet Status 
Datum: 08:33 So 06.02.2005
Autor: Reaper

Hallon danke für die ausführliche Antwort!

Ich möchte mal ein kurzes Bsp. vorrechnen damit ich sehe ob ich es richtig kapiert habe:

[mm] $\pmat{ 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 }$ [/mm]

Hierbei brauche ich nur eine Spaltenumformung machen:

[mm] $\pmat{ 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 } [/mm] .  [mm] \pmat{ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 } [/mm] =  [mm] \pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 }$ [/mm]

So jetzt habe ich nur eine Matrix die ich zum umformen gebraucht habe. Was heißt jetzt nach  [mm] $\pmat{ 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 }$ [/mm] umformen?




Bezug
                        
Bezug
Elementarmatrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:21 So 06.02.2005
Autor: Stefan

Hallo Reaper!

> Hallon danke für die ausführliche Antwort!
>  
> Ich möchte mal ein kurzes Bsp. vorrechnen damit ich sehe ob
> ich es richtig kapiert habe:
>  
> [mm]\pmat{ 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 }[/mm]
>  
> Hierbei brauche ich nur eine Spaltenumformung machen:
>  
> [mm]\pmat{ 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 } . \pmat{ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 } = \pmat{ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 }[/mm]
>  
>
> So jetzt habe ich nur eine Matrix die ich zum umformen
> gebraucht habe. Was heißt jetzt nach  [mm]\pmat{ 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 }[/mm]
> umformen?

Das bedeutet, dass du auf beiden Seiten der Gleichung mit dem Inversen von [mm] $\pmat{ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 }$ [/mm] multiplizieren musst. Aber das Inverse von [mm] $\pmat{ 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 }$ [/mm] ist ja gerade [mm]\pmat{ 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 }[/mm]. Also multiplizierst du beide Seiten von rechts mit [mm]\pmat{ 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 }[/mm].

Dann steht dort

[mm]\pmat{ 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 }=\pmat{ 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 } [/mm].

Die ist eine Trivialität, aber das ist ja auch kein Wunder, da die Matrix, die du als Produkt von Elementarmatrizen schreiben wolltest, bereits selber eine Elementarmatrix war. ;-)

Also: "Auflösen" bedeutet: Mit den Inversen zu multiplizieren (von links bzw. rechts, je nachdem, wo man etwas "weghaben" will), damit diese sich gegenseitig "eliminieren"...

Viele Grüße
Stefan


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de