www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Elemente Ideal
Elemente Ideal < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elemente Ideal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:39 Sa 18.12.2010
Autor: Sabine_B.

Aufgabe
Sei N [mm] \in \IZ. [/mm] Wie sehen die Element [mm] \IZ [/mm] / (N) aus?

Hallo,
die Frage kann ja eigentlich nicht so schwer sein. Ich nehme mal an, dass (N) ein Ideal ist? - Dann müssten die Elemente doch alle natürlichen Zahlen sein, die nicht Vielfaches von N sind, oder?
Sry, aber iwie bin ich mir hier total unsicher...

Liebe Grüße
Sabine

        
Bezug
Elemente Ideal: Antwort
Status: (Antwort) fertig Status 
Datum: 14:56 Di 21.12.2010
Autor: statler


> Sei N [mm]\in \IZ.[/mm] Wie sehen die Element [mm]\IZ[/mm] / (N) aus?

Hallo Sabine!

Mit dem Aussehen von mathematischen Objekten ist das so eine Sache, auch unter den Mathematikern gibt es ausgesprochene Schönlinge und völlig verwilderte Gestalten.

> die Frage kann ja eigentlich nicht so schwer sein. Ich
> nehme mal an, dass (N) ein Ideal ist? -

N ist eine ganze Zahl (steht so in der Aufgabe) und (N) das von N erzeugte Hauptideal, also alle ganzzahligen Vielfachen von N.

> Dann müssten die
> Elemente doch alle natürlichen Zahlen sein, die nicht
> Vielfaches von N sind, oder?

Neenee, da steht ja nicht [mm] $\IZ\ \backslash$ [/mm] (N),  also das Komplement von (N) in [mm] \IZ, [/mm] sondern das Restklassengebilde, und da gibt es nun verschiedene Möglichkeiten, das Ding hinzuschreiben, womit wir wieder beim Aussehen wären. Am besten gehen wir  erstmal zu |N| über, es ist nämlich (N) = (|N|), also können wir N > 0 annehmen. Dann sind die in Rede stehenden Elemente die Mengen (N), 1 + (N) = [mm] \{ 1+k | k \in (N) \} [/mm] ... N-1 + (N). Also gibt es genau N Elemente, eins schöner als das andere.

Gruß aus HH-Harburg
Dieter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de