www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Elemente von Q[x]/x³-2
Elemente von Q[x]/x³-2 < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Elemente von Q[x]/x³-2: Elemente von Q[X]/x³-2
Status: (Frage) beantwortet Status 
Datum: 17:09 So 09.12.2012
Autor: Decehakan

Aufgabe
Man berechne 1/(1 + x) im Korper
[mm] Q[x]/(x^3 [/mm] − 2)

ich brauche eure hilfe und komme auch nicht mehr weiter ,muss zunächst einmal wissen

wie die elemente von q[x]/x³-2 aussehen :

ich weiß aufjedenfall ,dass  1,2,x,x² elemente von  q[x]/x³-2

wie sieht es mit der 4,3 ,1/2 [mm] ,x^6 [/mm] aus ?

ich weiß nur dass aus x³-2=0 => x³=2



ich hoffe ihr könnt mir dabei behilfreich sein :-)

        
Bezug
Elemente von Q[x]/x³-2: Antwort
Status: (Antwort) fertig Status 
Datum: 13:08 Mi 12.12.2012
Autor: Schadowmaster

moin,

Deine Elemente haben die Form [mm] $ax^2+bx+c$ [/mm] mit $a,b,c [mm] \in \IQ$ [/mm] beliebig.
Insbesondere sind auch 4 und 3 enthalten (wähle jeweils $a=b=0$).
Die Addition sollte dadurch klar sein, da dabei der Grad des Polynoms nicht größer werden kann.
Bei der Multiplikation verwendet man [mm] $x^3=2$, [/mm] um das zu reduzieren.
Also als Beispiel:
[mm] $x^6 [/mm] = [mm] (x^3)^2 [/mm] = [mm] 2^2 [/mm] = 4$.
[mm] $x^5+2x [/mm] = [mm] x^3*x^2+2x [/mm] = [mm] 2x^2+2x$. [/mm]

Auf diese Art kann man das Produkt ganz normal wie das Produkt zweier Polynome in [mm] $\IQ[x]$ [/mm] ausrechnen und dann modulo [mm] $x^3-2$ [/mm] reduzieren; sodass wieder alles die Form [mm] $ax^2+bx+c$ [/mm] erhält.
Deine Aufgabe ist es jetzt also $a,b,c [mm] \in \IQ$ [/mm] zu finden, sodass
[mm] $(ax^2+bx+c)(1+x) [/mm] = 1$ ist.
Dafür würde ich dir raten das Produkt auszurechnen, zu reduzieren wie oben vorgeführt und dann zu gucken wie du $a,b,c$ wählen musst, damit 1 herauskommt.
Als Hinweis: $a,b,c$ sind eindeutig (da Inverse in einem Körper eindeutig sind).

Wenn du einen allgemeineren Ansatz möchtest, der auch im allgemeinen Fall funktioniert und nicht nur in diesem Beispiel, dann überlege dir folgendes:
Es ist [mm] ggT$(x^3-2,x+1)=1$. [/mm]
Damit gibt es also $f,g [mm] \in \IQ[x]$ [/mm] mit [mm] $f*(x^3-2)+g*(x+1)=1$. [/mm]
Reduzierst du dies nun modulo [mm] $x^3-2$, [/mm] so musst du dafür nicht erst ausmultiplizieren sondern kannst sofort [mm] $x^3-2=1$ [/mm] sagen.
Dann steht da also $g*(x+1)=1$ und damit ist $g$ - ggf. nach Reduktion - das gesuchte Inverse.
Dieses Vorgehen mit dem Euklidischen Algorithmus - der dir ja unter anderem $f,g$ liefert - funktioniert immer, solange die beiden betrachteten Polynome teilerfremd sind.

lg

Schadow

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de