www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Endomorphismus-Beweise
Endomorphismus-Beweise < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Endomorphismus-Beweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Sa 25.05.2013
Autor: Apfelchips

Aufgabe
Sei [mm]V[/mm] ein unitärer Vektorraum endlicher Dimension. Sei [mm]f:V \to V[/mm] ein Endomorphismus, welcher durch die Matrix [mm]A[/mm] beschrieben wird. Zeigen Sie:

a) [mm]f[/mm] ist selbstadjungiert [mm]\iff A = \overline{A}^{T}[/mm]

b) [mm]f[/mm] ist unitär [mm]\iff A \overline{A}^{T} = E_n[/mm]

c) [mm]f[/mm] ist normal [mm]\iff A \overline{A}^{T} = \overline{A}^{T} A[/mm]





Hallo zusammen,

ich habe leider bei keinen der drei zu beweisenden Aussagen wirklich konkrete Ansätze (zu a) aber eine Idee).


Ich weiß, dass

1) [mm]f[/mm] selbstadjungiert heißt, wenn gilt: [mm]f = f^{ad}[/mm], also: [mm] \langle f(v),v' \rangle = \langle v,f(v') \rangle \quad \forall v,v' \in V[/mm]

2) [mm]A = \overline{A}^{T}[/mm] heißt, dass die Matrix [mm]A[/mm] hermetisch ist, also das [mm]A^{T} = \overline{A} \iff A[/mm] ist hermetisch

3) [mm]f[/mm] unitär heißt: [mm] \langle v_1,v_2 \rangle = \langle f(v_1), f(v_2) \rangle \quad \forall v_1,v_2 \in V[/mm]

4) [mm]f[/mm] normal heißt: [mm]f \circ f^{ad} = f^{ad} \circ f[/mm]


Meine grobe Idee für a) ist, dass ich einmal [mm]\langle f(v),v' \rangle[/mm] so umforme, dass [mm]A^{T}[/mm] "auftaucht" und einmal [mm]\langle v,f(v') \rangle[/mm] so umforme, dass [mm]\overline{A}[/mm] "auftaucht".

Damit wäre die Äquivalenzbeziehung in beide Richtungen gezeigt. Die große Frage ist aber, welche Eigenschaften ich ausnutzen muss, um eine solche Umformung zu vollziehen (sofern das überhaupt sinnvoll erscheint)?

Reichen dazu die von mir gesammelten und oben aufgeführten Definitionen und Eigenschaften?

Ich würde mich freuen, wenn Ihr mir einen Ansatz geben könntet.

Für Teil b) und c) habe ich leider noch gar keine Idee.

Viele Grüße
Patrick

        
Bezug
Endomorphismus-Beweise: Antwort
Status: (Antwort) fertig Status 
Datum: 16:52 Sa 25.05.2013
Autor: DrRiese

Hi,

naja, am besten man schreibt sich die Bedingung der Selbstadjungiertheit mal auf:
<Ax,y> = <x,Ay> [mm] \gdw (\overline{Ax})^{T}y [/mm] = [mm] \overline{x}^{T}Ay [/mm]
[mm] \gdw [/mm] ?

Gruß,
DrRiese

Bezug
                
Bezug
Endomorphismus-Beweise: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:39 Sa 25.05.2013
Autor: Apfelchips

Hallo DrRiese,

danke für Deine Hilfe.

> naja, am besten man schreibt sich die Bedingung der
> Selbstadjungiertheit mal auf:
> <Ax,y> = <x,Ay> [mm]\gdw (\overline{Ax})^{T}y[/mm] =
> [mm]\overline{x}^{T}Ay[/mm]
> [mm]\gdw[/mm] ?

Ah, danke für den Anfang. Ist das dann so korrekt?
[mm]\langle Ax,y \rangle = \langle x,Ay \rangle \iff (\overline{Ax})^{T} * y = \overline{x}^{T} * Ay \iff \overline{x}^{T} * \overline{A}^{T} * y = x^{T} * \overline{Ay} \iff x^{T} * A^{T} * \overline{y} = x^{T} * \overline{A} * \overline{y}[/mm]

Hier sieht man dann auch schön, dass wenn f selbstadjungiert ist, [mm]A^{T} = \overline{A}[/mm] gilt, also A hermetisch ist.

Bezug
                        
Bezug
Endomorphismus-Beweise: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:20 Mo 27.05.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de