www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Partielle Differentialgleichungen" - Entwicklung in Fourierreihe
Entwicklung in Fourierreihe < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Entwicklung in Fourierreihe: Aufgabe
Status: (Frage) überfällig Status 
Datum: 15:15 Sa 21.06.2008
Autor: Woif1986

Aufgabe
Gegeben sei eine stetig differenzierbare Funktion u: [0,1] -> R mit u(0) = u(1) = 0.
a) Man zeige, dass es ein c > 0 gibt, sodass gilt:
[mm] \integral_{0}^{1}{[u(x)]^2 dx} \le [/mm] c [mm] \integral_{0}^{1}{[u'(x)]^2 dx}. [/mm]
b) Man finde den optimalen Wert für die Konstante c aus obiger Ungleichung, wobei zusätzlich [mm] \integral_{0}^{1}{[u(x)] dx} [/mm] gilt. Man entwickle dazu die Funktion u in eine Fourierreihe.

Hallo!

Ich komme bei der Aufgabe b) leider nicht voran (a hab ich bereits gelöst). Was ich bis jetzt gemacht habe, ist die Funktion u als Fourierreihe darzustellen und davon die Ableitung hinzuschreiben, das sieht dann bei mir folgendermaßen aus:

u(x) = [mm] \summe_{k=1}^{\infty} a_{k} cos(2k\pi [/mm] x) + [mm] \summe_{k=1}^{\infty} b_{k} sin(2k\pi [/mm] x)
u'(x) = [mm] \summe_{k=1}^{\infty} (-2k\pi) a_{k} sin(2k\pi [/mm] x) + [mm] \summe_{k=1}^{\infty} (2k\pi) b_{k} cos(2k\pi [/mm] x)

Hoffentlich kann mir jemand weiterhelfen. Danke im Voraus.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Entwicklung in Fourierreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:35 Sa 21.06.2008
Autor: rainerS

Hallo!

> Gegeben sei eine stetig differenzierbare Funktion u: [0,1]
> -> R mit u(0) = u(1) = 0.
>  a) Man zeige, dass es ein c > 0 gibt, sodass gilt:

>  [mm]\integral_{0}^{1}{[u(x)]^2 dx} \le[/mm] c
> [mm]\integral_{0}^{1}{[u'(x)]^2 dx}.[/mm]
>  b) Man finde den
> optimalen Wert für die Konstante c aus obiger Ungleichung,
> wobei zusätzlich [mm]\integral_{0}^{1}{[u(x)] dx}[/mm] gilt. Man
> entwickle dazu die Funktion u in eine Fourierreihe.

Den vorletzten Satz verstehe ich nicht: Was heisst: "wobei zusätzlich [mm]\integral_{0}^{1}{[u(x)] dx}[/mm] gilt"? Fehlt da was?

> Ich komme bei der Aufgabe b) leider nicht voran (a hab ich
> bereits gelöst). Was ich bis jetzt gemacht habe, ist die
> Funktion u als Fourierreihe darzustellen und davon die
> Ableitung hinzuschreiben, das sieht dann bei mir
> folgendermaßen aus:
>  
> u(x) = [mm]\summe_{k=1}^{\infty} a_{k} cos(2k\pi[/mm] x) +
> [mm]\summe_{k=1}^{\infty} b_{k} sin(2k\pi[/mm] x)
>  u'(x) = [mm]\summe_{k=1}^{\infty} (-2k\pi) a_{k} sin(2k\pi[/mm] x)
> + [mm]\summe_{k=1}^{\infty} (2k\pi) b_{k} cos(2k\pi[/mm] x)

Du könntest damit die beiden Integrale

[mm]\integral_{0}^{1}{[u(x)]^2 dx} [/mm]

und

[mm]\integral_{0}^{1}{[u'(x)]^2 dx}[/mm]

ausrechnen; das ergibt in beiden Fällen unendliche Reihen, in denen die [mm] $a_k$ [/mm] und [mm] $b_k$ [/mm] vorkommen.

Viele Grüße
   Rainer



Bezug
                
Bezug
Entwicklung in Fourierreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:59 Sa 21.06.2008
Autor: Woif1986

Nein, in der Angabe fehlt nichts. Dass das Integral über die Funktion u gleich Null ist, bedeutet hier, dass der Term [mm] a_{0}/2, [/mm] der eigentlich noch zur Fourierreihe gehört, wegfällt, weil dieser genau dem Integral über u entspricht. also:

[mm] a_{0} [/mm] = [mm] \integral_{0}^{1}{u(x) dx} [/mm] = 0.

Bezug
                        
Bezug
Entwicklung in Fourierreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:46 So 22.06.2008
Autor: rainerS

Hallo!

In der ursprünglichen Aufgabe steht aber nicht, dass es gleich 0 ist. Aber gut, damit ist meine Frage beantwortet.

Viele Grüße
   Rainer

Bezug
        
Bezug
Entwicklung in Fourierreihe: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:21 Mi 25.06.2008
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de