www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Ergebnis
Ergebnis < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ergebnis: Wo ist der Fehler
Status: (Frage) beantwortet Status 
Datum: 20:36 Sa 07.02.2009
Autor: Christopf

ich habe eine Aufgabe

[mm] \limes_{n\rightarrow\infty} (1+\bruch{3}{n})^{2n} [/mm]

Mein Problem ist das ich jetzt nicht weis was das richtige Ergebnis ist.

Laut Taschenrechner ergibt das 1 und wenn ich den bekannte Grenzwertsatz [mm] \limes_{n\rightarrow\infty} (1+\bruch{1}{n})^{n} [/mm] = e deswegen habe ich gedacht das bei mir [mm] e^2 [/mm] rauskommt. Was mache ich falsch


        
Bezug
Ergebnis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 Sa 07.02.2009
Autor: angela.h.b.


> ich habe eine Aufgabe
>  
> [mm]\limes_{n\rightarrow\infty} (1+\bruch{3}{n})^{2n}[/mm]
>  
> Mein Problem ist das ich jetzt nicht weis was das richtige
> Ergebnis ist.
>  
> Laut Taschenrechner ergibt das 1 und wenn ich den bekannte
> Grenzwertsatz [mm]\limes_{n\rightarrow\infty} (1+\bruch{1}{n})^{n}[/mm]
> = e deswegen habe ich gedacht das bei mir [mm]e^2[/mm] rauskommt.
> Was mache ich falsch

Hallo,

kennst Du denn auch den Grenzwert von [mm] (1+\bruch{x}{n})^{n} [/mm] ?

Bedenke weiter: [mm] (1+\bruch{3}{n})^{2n}=((1+\bruch{3}{n})^{n})^2. [/mm]

Gruß v. Angela

Bezug
                
Bezug
Ergebnis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:50 Sa 07.02.2009
Autor: Christopf

Den Grenzwert$ [mm] (1+\bruch{x}{n})^{n} [/mm] $ kenne ich nicht.
$ [mm] (1+\bruch{3}{n})^{2n}=((1+\bruch{3}{n})^{n})^2. [/mm] $
Bei diesen Tip kmme ich auch auf [mm] e^2 [/mm]

Wenn das ruichtig ist verstehe ich immer noch nicht das der Taschenrechner was anderes raus hat


Bezug
                        
Bezug
Ergebnis: Antwort
Status: (Antwort) fertig Status 
Datum: 21:56 Sa 07.02.2009
Autor: angela.h.b.


> Den Grenzwert[mm] (1+\bruch{x}{n})^{n}[/mm] kenne ich nicht.
> [mm](1+\bruch{3}{n})^{2n}=((1+\bruch{3}{n})^{n})^2.[/mm]
>  Bei diesen Tip kmme ich auch auf [mm]e^2[/mm]
>  
> Wenn das ruichtig ist verstehe ich immer noch nicht das der
> Taschenrechner was anderes raus hat

Hallo,

Du denkst hier nicht ganz logisch: Du hattest zuvor gesagt, daß [mm] \lim_{n\to \infty}(1+\bruch{1}{n})^{n}=e [/mm] ist, was völlig richtig ist.

[mm] e^2 [/mm] wäre demnach doch [mm] \lim_{n\to \infty}(1+\bruch{1}{n})^{2n}, [/mm] Du jedoch sollst  den grenzwert von [mm] (1+\bruch{3}{n})^{2n} [/mm] bestimmen.

Daß da nicht dasselbe herauskommt, wundert nur schwach, oder?

Es ist    [mm] lim_{n\to \infty}(1+\bruch{x}{n})^{n}=e^x, [/mm] und wenn Du das auch nicht weißt, so bin ich mir doch ziemlich sicher, daß Du es lt. Vorlesung wissen solltest.

Damit gelingt Dir dann auch die Ermittlung des Grenzwertes.

Gruß v. Angela

>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de