www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Erlösfunktion
Erlösfunktion < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erlösfunktion: wie ermitteln ohne p?
Status: (Frage) beantwortet Status 
Datum: 16:55 Mi 24.01.2007
Autor: AAngelaa

Aufgabe
Bestimmen Sie die Erlösfunktion, Druchschnittserlösfunktion, die Gewinnfunktion, gewinnmaximale Menge der Funktion.

Die Grenzkoestenfkt. war vorgegeben mit:
3 [mm] x^2 [/mm] - 8x + 8
Die Gesamtkostenfunktion habe ich schon: : [mm] x^3 [/mm] -4x + 8 + 4/x
Ebenso die Durchschnittskostenfkt.: [mm] x^2 [/mm] -4x + 8 + 4/x


Wie bestimme ich jetzt die erlösfunktion ohne p'? Ich komm leider nicht drauf..

Danke für die Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Erlösfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 13:16 Do 25.01.2007
Autor: angela.h.b.


> Bestimmen Sie die Erlösfunktion,
> Druchschnittserlösfunktion, die Gewinnfunktion,
> gewinnmaximale Menge der Funktion.
>  Die Grenzkoestenfkt. war vorgegeben mit:
> 3 [mm]x^2[/mm] - 8x + 8
>  Die Gesamtkostenfunktion habe ich schon: : [mm]x^3[/mm] -4x + 8 +
> 4/x
>  Ebenso die Durchschnittskostenfkt.: [mm]x^2[/mm] -4x + 8 + 4/x
>
>
> Wie bestimme ich jetzt die erlösfunktion ohne p'? Ich komm
> leider nicht drauf..

Hallo,

[willkommenmr].

Es sind also die Grenzkosten [mm] K'(x)=3x^2 [/mm] - 8x + 8

Die Ableitung der Gesamtkostenfunktion K muß ja die Grenzkostenfunktion K' ergeben.
Hast Du das bei der von Dir ermittelten Gesamtkostenfunktion überprüft?
(Sie stimmt nicht, rechne das nochmal nach. Und bedenke die Fixkosten als konstanten Summanden, also [mm] +K_{fix}) [/mm]

Die Durchschnittskostenfunktion k erhältst Du dann aus der Kostenfunktion K wie folgt: [mm] k(x)=\bruch{K(x)}{x} [/mm]

Der Gewinn G errechnet sich aus der Differenz von Erlös E und Kosten K.
Bei einem Stückpreis von p ist also E(x)=px und man hat

G(x)=E(x)-K(x)=px- K(x).

Fürs Gewinnmaximum brauchst Du die erste Ableitung

[mm] G'(x)=p-K'(x)=p-(3x^2 [/mm] - 8x + 8),

welche =0 ist für [mm] p=3x^2 [/mm] - 8x + 8.

Hieraus kannst Du die optimale Stückzahl x errechnen durch Lösen der quadratischen Gleichung.
Dein p behandelst Du, als hättest du irgendeine ganz normale Zahl dort stehen.

Im Ergebnis wirst Du die optimale Stückzahl in Abhängigkeit vom Preis p erhalten, was nicht ganz unlogisch ist.

Beginne aber zunächst mit der Ermittlung der korrekten Kostenfunktion.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de