www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Topologie und Geometrie" - Erste Fundamentalform
Erste Fundamentalform < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erste Fundamentalform: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:22 Di 24.01.2012
Autor: chesn

Aufgabe
Ist h eine parametrisierte Fläche und bezeichnet [mm] T_{(u,v)}h [/mm] die Tangentialebene von h im Punkt h(u,v), so nennt man die Bilinearform

$ I(x,y):=<x,y>, \ \ \  [mm] (x,y\in T_{(u,v)}h) [/mm] $

die erste Fundamentalform von h. Berechnen Sie für a,b,c [mm] \in \IR [/mm] die Darstellungsmatrix der ersten Fundamentalform bezüglich der basis [mm] \{\partial_{u}h,\partial_vh\} [/mm] der folgenden parametrisierten Flächen in den Punkten, in denen sie regulär sind:

(a) h(u,v)=(a*sin(u)*cos(v), b*sin(u)*sin(v), c*cos(u))

Hallo! Sind eig. mehrere Aufgabenteile, aber denk mal wenn ich die (a) löse, dann ist der Rest auch kein Problem mehr.
Hab mich zunächst mal bei []Wiki informiert. (Im Skript steht nichts weiter.. ) Demnach hab ich erstmal die Koeffizienten der ersten Fundamentalform berechnet: ($*$ bezeichnet das Skalarprodukt)

$ [mm] E(u,v)=\partial_uh*\partial_uh, [/mm] \ \ \ \ [mm] F(u,v)=\partial_uh*\partial_vh, [/mm] \ \ \ \ [mm] G(u,v)=\partial_vh*\partial_vh [/mm] $

Die Darstellungsmatrix ist dann [mm] M=\pmat{E & F \\ F & G} [/mm]

Bis hierhin kein Problem. Was mich jetzt verwirrt sind die Formulierungen in der Aufgabe: "in den Punkten, in denen diese regulär sind" und "bezüglich der Basis...".

Bin ich schon fertig wenn ich die Matrix aufgestellt habe oder muss ich sonst noch irgendetwas beachten?

Als Ergebnis von (a) hätte ich dann die Darstellungsmatrix:

[mm] M=\pmat{a^2cos^2(u)cos^2(v)+b^2cos^2(u)sin^2(v)+c^2sin^2(u) & -a^2cos(u)cos(v)sin(u)sin(v)+b^2sin(u)cos(u)sin(v)cos(v) \\ -a^2cos(u)cos(v)sin(u)sin(v)+b^2sin(u)cos(u)sin(v)cos(v) & a^2sin^2(u)sin^2(v)+b^2sin^2(u)cos^2(v)} [/mm]

Was mir von der Größe der Matrix etwas seltsam vorkommt..

Danke fürs Drüberschauen!

Lieben Gruß
chesn

        
Bezug
Erste Fundamentalform: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:27 Di 24.01.2012
Autor: chesn

Sorry, bei "Darstellungsmatrix bzgl. Basis" hats jetzt erst klick gemacht, also ist das soweit erledigt..

aber wie wirkt sich das "in den punkten in denen sie regulär sind" aus?

Gruß
chesn

Bezug
        
Bezug
Erste Fundamentalform: Antwort
Status: (Antwort) fertig Status 
Datum: 12:52 Do 26.01.2012
Autor: MatthiasKr

Hallo,

> Ist h eine parametrisierte Fläche und bezeichnet
> [mm]T_{(u,v)}h[/mm] die Tangentialebene von h im Punkt h(u,v), so
> nennt man die Bilinearform
>
> [mm]I(x,y):=, \ \ \ (x,y\in T_{(u,v)}h)[/mm]
>  
> die erste Fundamentalform von h. Berechnen Sie für a,b,c
> [mm]\in \IR[/mm] die Darstellungsmatrix der ersten Fundamentalform
> bezüglich der basis [mm]\{\partial_{u}h,\partial_vh\}[/mm] der
> folgenden parametrisierten Flächen in den Punkten, in
> denen sie regulär sind:
>  
> (a) h(u,v)=(a*sin(u)*cos(v), b*sin(u)*sin(v), c*cos(u))
>  Hallo! Sind eig. mehrere Aufgabenteile, aber denk mal wenn
> ich die (a) löse, dann ist der Rest auch kein Problem
> mehr.
> Hab mich zunächst mal bei
> []Wiki
> informiert. (Im Skript steht nichts weiter.. ) Demnach hab
> ich erstmal die Koeffizienten der ersten Fundamentalform
> berechnet: ([mm]*[/mm] bezeichnet das Skalarprodukt)
>  
> [mm]E(u,v)=\partial_uh*\partial_uh, \ \ \ \ F(u,v)=\partial_uh*\partial_vh, \ \ \ \ G(u,v)=\partial_vh*\partial_vh[/mm]
>  
> Die Darstellungsmatrix ist dann [mm]M=\pmat{E & F \\ F & G}[/mm]
>  
> Bis hierhin kein Problem. Was mich jetzt verwirrt sind die
> Formulierungen in der Aufgabe: "in den Punkten, in denen
> diese regulär sind" und "bezüglich der Basis...".
>  

ich vermute regularität in einem punkt der fläche bedeutet, dass das Differenzial (die Jakobi-Matrix) der Parametrisierung in diesem punkt vollen Rang hat, also injektiv ist. das wäre analog zur definition von regulären flächen.

gruss
matthias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Topologie und Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de