www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Erwartungswert
Erwartungswert < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert: Ansatz ?
Status: (Frage) beantwortet Status 
Datum: 13:05 Mo 03.01.2005
Autor: Phlipper

Berechnen Sie  [mm] EX^{n} [/mm] (Erwartungswert) für n [mm] \in [/mm] N und eine N(0; 1)-verteilte zufällige Größe X.
Keine Ahnung, wie ich da rangehen soll. Würde mich über einen Tipp freuen !

        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 13:52 Mo 03.01.2005
Autor: Brigitte

Hallo Phlipper!

> Berechnen Sie  [mm]EX^{n}[/mm] (Erwartungswert) für n [mm]\in[/mm] N und eine
> N(0; 1)-verteilte zufällige Größe X.
>  Keine Ahnung, wie ich da rangehen soll. Würde mich über
> einen Tipp freuen !

Ich habe Dich doch schon mal darauf hingewiesen, dass Du mal ein paar Ansätze dazu aufschreiben solltest. Du bist Mathematik-Student. Da wird Dir doch hoffentlich einfallen, wie man so einen Erwartungswert ausrechnet. Zumindest für $n=1$ und $n=2$ solltest Du keine Probleme haben (auch ohne Rechnen). Für allgemeines $n$ solltest Du mit partieller Integration auf eine rekursive Formel kommen, aus der sich der Rest ergibt.

Gruß
Brigitte
  

Bezug
                
Bezug
Erwartungswert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Mo 03.01.2005
Autor: Phlipper

also die Formel für die Standartnormalverteilung ist f(x) = 1/ [mm] \wurzel{2pi}* e^{- x^{2}/2}. [/mm]
Ich weiß nicht,wie ich  [mm] EX^{n} [/mm] interpretieren soll,ich war auch nicht da. Also für n=1 dürfte sich an der Formel nichts ändern.  

E(X) =  [mm] \integral_{- \infty}^{ \infty} [/mm] {x*f(x) dx} ist doch die Formel für Erwartungswert. Bitte noch eine kleine Hilfe,ich muss den Kram übermorgen abgeben und ich bin erkältet,bin deshalb nicht an der Uni.

Bezug
                        
Bezug
Erwartungswert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:05 Mo 03.01.2005
Autor: Brigitte

Hallo nochmal!

> also die Formel für die Standartnormalverteilung ist f(x) =
> 1/ [mm]\wurzel{2pi}* e^{- x^{2}/2}. [/mm]
>  Ich weiß nicht,wie ich  
> [mm]EX^{n}[/mm] interpretieren soll,ich war auch nicht da. Also für
> n=1 dürfte sich an der Formel nichts ändern.  
>
> E(X) =  [mm]\integral_{- \infty}^{ \infty}[/mm] {x*f(x) dx} ist doch

[ok]

> die Formel für Erwartungswert. Bitte noch eine kleine
> Hilfe,ich muss den Kram übermorgen abgeben und ich bin
> erkältet,bin deshalb nicht an der Uni.

Und die Formel für den Erwartungswert von [mm] $X^n$ [/mm] ist entsprechend

[mm][mm] E(X^n) [/mm] =  [mm]\integral_{- \infty}^{ \infty} x^n \cdot f(x) dx [/mm]

Existiert $E(h(X))$, gilt allgemein für stetige Funktionen $h$

[mm]E(h(X)) =  [mm]\integral_{- \infty}^{ \infty} h(x) \cdot f(x) dx [/mm]

Nun solltest Du durchstarten können.

Gruß
Brigitte

Bezug
        
Bezug
Erwartungswert: Lösung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:33 Do 06.01.2005
Autor: Phlipper

Danke Brigitte für die Starthilfe.
Also ich habe jetzt herausbekommen, dass  [mm] EX^{n} [/mm] für alle n ungerade gleich Null ist.
Für gerade n erhalte ich: (i ungerade)
[mm] \summe_{i=1}^{n} -t^{n-i} e^{ t^{2}/2} [/mm]
Reicht das als Lösung ? Oder habe ich etwas vergessen, wäre dankbar, wenn du mir nochmal ein kurzes Feedback gibst.

Bezug
                
Bezug
Erwartungswert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:18 Fr 07.01.2005
Autor: Brigitte

Hallo Phlipper!

> Danke Brigitte für die Starthilfe.
>  Also ich habe jetzt herausbekommen, dass  [mm]EX^{n}[/mm] für alle
> n ungerade gleich Null ist.

[ok]

>  Für gerade n erhalte ich: (i ungerade)
>   [mm]\summe_{i=1}^{n} -t^{n-i} e^{ t^{2}/2}[/mm]

Das ist komisch, dass hier noch $t$ auftaucht. Meinst Du nicht?

>  Reicht das als
> Lösung ? Oder habe ich etwas vergessen, wäre dankbar, wenn
> du mir nochmal ein kurzes Feedback gibst.

Also mit partieller Integration erhält man doch:

[mm]E(X^n)=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} x^ne^{-x^2/2}\,dx= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} x^{n-1}\cdot x e^{-x^2/2}\,dx[/mm]

[mm]=\left[\frac{1}{\sqrt{2\pi}} x^{n-1}\cdot (-e^{-x^2/2})\right]_{-\infty}^{\infty} -\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} (n-1)x^{n-2}\cdot (- e^{-x^2/2})\,dx[/mm]

[mm]=0+(n-1)E(X^{n-2}).[/mm]

Kannst Du nun angeben, was das für gerades $n$ bedeutet?

Viele Grüße
Brigitte
  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de