www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Erwartungswert
Erwartungswert < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert : Beweis
Status: (Frage) beantwortet Status 
Datum: 16:52 Do 03.02.2005
Autor: xsjani

Hallo, ich habe nochmal eine Aufgabe zum Erwartungswert bekommen und brauche beim Beweis mal wieder ein bisschen Hilfe.

Also die Aufgabe lautet:

X,Y: [mm] \Omega \rightarrow \IR [/mm] seien unabhängige Zufallsvariablen, deren Erwartungswerte existieren. Skizziere einen Beweis der Tatsache, dass
E(X*Y) = EX * EY ist.

        
Bezug
Erwartungswert : Fubini
Status: (Antwort) fertig Status 
Datum: 19:56 Do 03.02.2005
Autor: Gnometech

Grüße!

Nun, ich weiß nicht, ob das als Beweisskizze ausreicht, wenn ich "Fubini" sage...

Aber beachte einfach, was für bei Produkten von Verteilungen unabhängiger Zufallsvariablen gilt. :-)

Lars

Bezug
        
Bezug
Erwartungswert : Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 Fr 04.02.2005
Autor: Julius

Hallo!

Da du die Frage wieder auf "unbeantwortet" gestellt hast, gehe ich mal davon aus, dass du mit Lars Hinweis nicht zurechtkommst. In diesem Fall wäre eine kleine Mitteilung zusätzlich zur Statusänderung sehr hilfreich.

Eigentlich hat Lars das Wesentlich aber gesagt. Ich will nur noch ein kleines bisschen ausführlicher werden und warte dann mal auf deine Ideen.

Die Tatsache, dass $X$ und $Y$ stochastisch unabhängig sind, bedeutet ja, dass die gemeinsame Verteilung, also die Verteilung des zweidimensionalen Zufallsvektors $(X,Y)$, bezeichnet mit [mm] $P_{(X,Y)}$, [/mm] gerade gleich dem Produkt der Verteilungen der beiden Zufallsvariablen $X$ und $Y$, also gleich [mm] $P_X \otimes P_Y$, [/mm] ist.

Kurz geschrieben:

(*) $X,Y [mm] \quad \mbox{stochastisch unabhängig} \quad \Rightarrow \quad P_{(X,Y)} [/mm] = [mm] P_X \otimes P_Y$. [/mm]

Merken wir uns das. Jetzt fangen wir mit dem Beweis an:

$E[XY]$

[mm] $=\int\limits_{\Omega} XY\, [/mm] dP$

[mm] $=\int\limits_{\IR^2} xy\, dP_{(X,Y)}(x,y)$ [/mm]

[mm] $\stackrel{(\*)}{=} \int\limits_{\IR^2} xy\, d(P_X \otimes P_Y)(x,y)$ [/mm]

$= [...]$

So, und jetzt kommt der Satz von Fubini ins Spiel. Um besser nachvollziehen können, wie man den hier anwendet, kannst du ja mit der anderen Seite der zu zeigenden Gleichung beginnen:

$E[X] [mm] \cdot [/mm] E[Y]$

[mm] $=\int\limits_{\Omega}X\, [/mm] dP [mm] \cdot \int\limits_{\Omega}Y\, [/mm] dP$

[mm] $=\int\limits_{\IR}x\, dP_X(x) \cdot \int\limits_{\IR}y\, dP_Y(y)$. [/mm]

So, warum sind nun die beiden Seiten gleich? Naja, wegen Fubini halt. Aber du solltest vorher mal schauen, ob die Voraussetzungen des Satzes von Fubini überhaupt erfüllt sind! Mache dir das bitte ganz genau klar .

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de