www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitsrechnung" - Erwartungswert
Erwartungswert < Wahrscheinlichkeit < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:53 Mi 03.07.2013
Autor: PowerBauer

Aufgabe
Auf dem Schulhof stehen sich zwei Gruppen à 30 Schüler gegenüber. Bei der einen Gruppe hat jeder einen Wasserluftballon, den er auf einen beliebigen Schüler der anderen Gruppe wirft. Jeder Ballon trifft sein Ziel, es findet allerdings keine Kommunikation zwischen den Werfern statt und alle werfen gleichzeitig.
Wie viele Schüler der anderen Gruppe werden vermutlich trocken bleiben?

Hallo Leute,

da ich mir nicht sicher bin, wie ich überhaupt ansetzen soll, habe ich das Problem zunächst auf 2 Dreiergruppen reduziert.
O------> A
O------> B
O------> C

Das wäre eine Möglichkeit, wie die Sch. werfen könnten.

Nun Habe ich mir die Treffermöglichkeiten aufgeschrieben:

3 x A    (1)
3 x B    (1)
3 x C    (1)
2xA & B  (3)
2xA &  C (3)
...
A & B & C (3)

insgesamt also 10 Ereignisse, die allerdings nicht gleich wahrscheinlich sind. Für 3xA gibt es nur eine Möglichkeit(=alle müssen auf A werfen). Das Gleiche gilt für 3xB und 3xC. Für die restlichen 7 Ereignisse gibt es je drei Möglichkeiten, wie sie eintreten könnten. Insgesamt also 24 gleichwahrscheinliche Ergebnisse.( P=1/24) Bei den ersten drei Möglichkeiten bleiben je 2 Sch. trocken, bei den andern je einer, nur bei der letzten bleibt keiner trocken.

Wenn ich nun den Erwartungswert berechne:
E=1/24(2+2+2+1*18+0*3)=0,75
bliebe also grad mal 1 Sch. trocken - wenn der Rechenweg ok ist, könnte ich mich an die 30iger Gruppen machen - oder gibt es eine Abkürzung?

Vielen Dank für eure Hilfe

        
Bezug
Erwartungswert: Eig simpel
Status: (Antwort) fertig Status 
Datum: 13:55 Mi 03.07.2013
Autor: xxgenisxx

Ich würde an deiner Stelle darüber nachdenken, wie hoch die Warscheinlichkeit für einen Einzelnen ist, nicht getroffen zu werden. Ich hatte leider in der Schule nie Stochastik und im Studium bin ich auch noch nicht bei Stochastik, deswegen kann ich wenig fachlich argumentieren, aber ich versuche dir die Logik nahezulegen ;D
Da jeder der Werfer das Ziel willkürlich wählt, ist die warscheinlichkeit bei jedem wurf trocken zu bleiben 29/30. Da es insgesammt 30 Wurfe gibt, ist die Warscheinlichekit trocken zu bleiben (29/30)^30. Kommst du jetzt weiter?

Bezug
                
Bezug
Erwartungswert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Mi 03.07.2013
Autor: PowerBauer

Danke für die Antwort.

29/30^30: das ist die Wahrscheinlichkeit für einen Einzelnen trocken zu bleiben - aber die Frage ist ja wie viele vermutlich trocken bleiben - da komm ich so nicht weiter.

Bezug
                        
Bezug
Erwartungswert: Antwort
Status: (Antwort) fertig Status 
Datum: 15:45 Mi 03.07.2013
Autor: steppenhahn

Hallo,


Zunächst: Dein Ansatz ist OK und funktioniert. Du hast noch zwei kleine Fehler: Die letzte Möglichkeit, dass A,B,C alle getroffen werden, kann durch insgesamt 6 Möglichkeiten statt nur 3 eintreten.
Die endgültige Formel für den Erwartungswert lautet:

1/27*(3*2 + 18*1 + 6*0) = 0.89

Allerdings wird diese Berechnung für größere Anzahlen aufwendig.
Hier ist eine Möglichkeit, wie es leichter geht:

Sei n die Anzahl der Schüler der einen Gruppe (die beworfen werden),
und m die Anzahl der Schüler die die Wasserballons werfen.

Es sei [mm] $X_i [/mm] = 1$, wenn der i-te Schüler nicht nassgeworden ist (i = 1,...,n), ansonsten sei [mm] $X_i [/mm] = 0$.

Gesucht ist der Erwartungswert von der Anzahl $A := [mm] X_1 [/mm] + ... [mm] X_n$ [/mm] der Schüler, die nicht nassgeworden sind. Der Erwartungswert ist linear:

$E[A] = [mm] E[X_1 [/mm] + ...  + [mm] X_n] [/mm] = [mm] E[X_1] [/mm] + ... + [mm] E[X_n] [/mm] = [mm] n*E[X_1] [/mm] = n [mm] *P(X_1 [/mm] = 1)$

Es genügt also die Wahrscheinlichkeit zu bestimmen, dass [mm] $X_1 [/mm] = 1$ ist! Überlege dir, dass diese Wahrscheinlichkeit [mm] $\left(\frac{n-1}{n}\right)^{m}$ [/mm] beträgt.
Damit ist

$E[A] = n [mm] \cdot \left(\frac{n-1}{n}\right)^{m}$ [/mm]

der gesuchte Erwartungswert.

Viele Grüße,
Stefan

Bezug
                                
Bezug
Erwartungswert: Genau
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:05 Mi 03.07.2013
Autor: xxgenisxx

Stefan hat das ja schon fachlick korrekt gemacht, danke. Ich hätte vllt auchnoch auf deine Lösungsweg eingehen sollen sorry ;D

Bezug
                                
Bezug
Erwartungswert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:19 Mi 03.07.2013
Autor: PowerBauer

danke - jetzt stimmt mein Ergebnis auch mit dem sehr viel einfacheren Weg überein! (Mit meinem Ansatz  wäre ich bei 30 Sch. wohl verzweifelt.)

LG

PB

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitsrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de