www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Erwartungswert - Beweis
Erwartungswert - Beweis < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert - Beweis: Idee
Status: (Frage) beantwortet Status 
Datum: 20:12 Fr 28.04.2006
Autor: Ursus

Aufgabe
X sei eine diskrete Zufallsvariable mit Werten in [mm] N_{0}. [/mm]
Zeigen Sie: E(X)= [mm] \summe_{k\ge1}^{ \infty} [/mm] P(X [mm] \ge [/mm] k)

Hallo Mathegenies!

Die Aufgabenstellung ist mir klar und ich hab auch schon eine Idee.
Der Erwartungswert wird ja so berechnet:
E(X)= [mm] \summe_{k=1}^{ \infty} [/mm] k*P(X=k)

Wenn man die Glieder der Reihen einzeln aufschreibt, ist sofort klar, dass dies gilt:
[mm] \summe_{k=1}^{ \infty} [/mm] k*P(X=k) = [mm] \summe_{k\ge1}^{ \infty} [/mm] P(X [mm] \ge [/mm] k)

Ich möchte aber dafür einen Beweis.

Mein Vorschlag: Beweis durch Induktion:

Ich zeige, dass die #P(X=n)=n in der Reihe [mm] \summe_{k\ge1}^{ \infty} [/mm] P(X [mm] \ge [/mm] k)

IA: n=1    trivialerweise erfüllt.

IS: n  [mm] \to [/mm] n+1:

Wissen also: #P(X=n)=n in der Reihe [mm] \summe_{k\ge1}^{ \infty} [/mm] P(X [mm] \ge [/mm] k) für alle 0 [mm] \le [/mm] k [mm] \le [/mm] n

[mm] \summe_{k\ge1}^{ \infty} [/mm] P(X [mm] \ge [/mm] k) = [mm] \summe_{k\ge1}^{ n} [/mm] P(X [mm] \ge [/mm] k) + [mm] \summe_{k\ge n+1}^{ \infty} [/mm] P(X [mm] \ge [/mm] k)

   die # P(X=n)=n in [mm] \summe_{k\ge1}^{ n} [/mm] P(X [mm] \ge [/mm] k)
[mm] \Rightarrow [/mm] # P(X=n+1)=n   in [mm] \summe_{k\ge1}^{ n} [/mm] P(X [mm] \ge [/mm] k)

und die # P(X=n+1)=1   in [mm] \summe_{k\ge n+1}^{ \infty} [/mm] P(X [mm] \ge [/mm] k)

insgesamt [mm] \Rightarrow [/mm] # P(X=n+1)=n+1                                 [mm] \Box [/mm]

Das wär mein Beweis.
Passt das so?  
Vielleicht hat jemand eine bessere Idee.
Besten Dank für eure Hilfe!
mfg URSUS

        
Bezug
Erwartungswert - Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 10:28 Sa 29.04.2006
Autor: DirkG

Im Grunde genommen ist es richtig, aber an der entscheidenden Stelle

> die # P(X=n)=n in [mm]\summe_{k\ge1}^{ n}[/mm] P(X [mm]\ge[/mm] k)
>   [mm]\Rightarrow[/mm] # P(X=n+1)=n   in [mm]\summe_{k\ge1}^{ n}[/mm] P(X [mm]\ge[/mm]  k)

ist es für meinen Geschmack etwas dünn kommentiert. Ich würde es einfach über eine Doppelsumme, und dann Vertauschung der Summationsindizes machen:
[mm] $$\sum\limits_{k=1}^{\infty} [/mm] ~ [mm] P(X\geq [/mm] k) = [mm] \sum\limits_{k=1}^{\infty} \sum\limits_{n=k}^{\infty} [/mm] ~  P(X=n) = [mm] \sum\limits_{1\leq k\leq n<\infty} [/mm] ~  P(X=n) = [mm] \sum\limits_{n=1}^{\infty} \sum\limits_{k=1}^n [/mm] ~  P(X=n) = [mm] \sum\limits_{n=1}^{\infty} [/mm] ~  nP(X=n)$$
Falls jemand die Stirn runzelt ("darf man so einfach in einer Doppelreihe die Summation vertauschen?"): Alle Reihenglieder sind nichtnegativ, also gibt es nur die beiden Fälle absolute Konvergenz oder bestimmte Divergenz gegen [mm] $+\infty$. [/mm] In beiden Fällen ist die Vertauschung zulässig.


Bezug
                
Bezug
Erwartungswert - Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:42 Sa 29.04.2006
Autor: Ursus

Vielen Dank!
So gefällt es mir auch besser.
Mfg URSUS

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de