www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Erwartungswert - Zeilenmaximum
Erwartungswert - Zeilenmaximum < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert - Zeilenmaximum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:42 Fr 02.08.2013
Autor: k0ol

Hallo zusammen,

seien [mm] $x_1$ [/mm] und [mm] $x_2$ [/mm] zwei Zufallszahlen aus der selben Verteilung, sagen wir Standardnormalverteilung, also [mm] $E[x_1]=E[x_2 [/mm] ]=0$. Außerdem sei [mm] $x_3=max\{x_1, x_2\}$. [/mm] Was ist der Erwartungswert von [mm] x_3? [/mm]

Ich habe das Ganze mal mit Stata simuliert. Bei der Standardnormalverteilung ist [mm] $E[x_3]\approx [/mm] 0.56$, wenn ich stattdessen sage [mm] $x_1,x_2\sim [/mm] N(0,2)$ kriege ich [mm] $E[x_3]\approx [/mm] 1.12$. Der Erwartungswert von [mm] $x_3$ [/mm] scheint also linear in der Standardabweichung der angenommenen Verteilung zu sein.

Ich würde diese Ergebnisse gerne theoretisch nachvollziehen, habe aber ehrlich gesagt keine Ahnung wie ich dabei vorgehen muss. Kann mir jemand von Euch bitte helfen?

Danke und Gruß
k0ol

PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Erwartungswert - Zeilenmaximum: Antwort
Status: (Antwort) fertig Status 
Datum: 17:56 Fr 02.08.2013
Autor: Leopold_Gast

Es seien [mm]\varphi(t),\Phi(t)[/mm] Dichte und Verteilungsfunktion der Standardnormalverteilung. Vermutlich sollen [mm]X_1,X_2[/mm] unabhängig voneinander sein.

[mm]Y=\max \left\{ X_1,X_2 \right\}[/mm] ist genau dann kleiner oder gleich [mm]t[/mm], wenn beide Größen zugleich kleiner oder gleich [mm]t[/mm] sind. Als Verteilungsfunktion von [mm]Y[/mm] bekommt man damit:

[mm]F(t) = P \left( Y \leq t \right) = P \left( X_1 \leq t \, , \, X_2 \leq t \right) = P \left( X_1 \leq t \right) \cdot P \left( X_2 \leq t \right) = \left( \Phi(t) \right)^2[/mm]

Und die Dichte von [mm]Y[/mm] ist

[mm]f(t) = 2 \, \varphi(t) \, \Phi(t)[/mm]

Für den Erwartungswert von [mm]Y[/mm] gilt somit:

[mm]\mathcal{E}(Y) = \int_{- \infty}^{\infty} 2 t \, \varphi(t) \, \Phi(t) ~ \mathrm{d}t = \int_{- \infty}^{\infty} -2 \varphi'(t) \Phi(t) ~ \mathrm{d}t = \int_{- \infty}^{\infty} 2 \left( \varphi(t) \right)^2 ~ \mathrm{d}t = \frac{1}{\sqrt{\pi}}[/mm]

Bezug
                
Bezug
Erwartungswert - Zeilenmaximum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:04 Fr 02.08.2013
Autor: k0ol

Das ging ja schnell. Super! Vielen Dank.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de