www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - Erwartungswert und Varianz
Erwartungswert und Varianz < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert und Varianz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 22:01 Sa 14.11.2009
Autor: steppenhahn

Aufgabe
Es sei [mm] $\phi:\{1,...,n\}\to\{1,...,n\}$ [/mm] eine zufällig ausgewählte Permutation. Man bestimme den Erwartungswert und die Varianz für die Anzahl der Fixpunkte von [mm] \phi. [/mm]

Hallo!

Bei der obigen Aufgabe komme ich nicht weiter, weil ich nicht weiß ob mein Ansatz richtig ist.

X = Anzahl der Fixpunkte von [mm] \phi. [/mm]

Wir haben den Erwartungswert definiert als:

$E(X) = [mm] \sum_{k=0}^{n}k*P(X=k)$ [/mm]

Aber ich glaube hier bringt mir die alternative Variante

$E(X) = [mm] \sum_{k=0}^{n}P(X\ge [/mm] k)$

mehr. Ich habe mir gedacht, ich versuche die Wahrscheinlichkeit zu berechnen, dass [mm] \phi [/mm] mindestens k Fixpunkte hat. Dazu wähle ich k feste Fixpunkte; um die aus den n Stück auszuwählen habe ich [mm] \vektor{n\\k} [/mm] Möglichkeiten (ohne Zurücklegen, ohne Beachtung der Reihenfolge).
Für die restlichen n-k Zuordnungen bleiben nun (n-k)! Möglichkeiten (da ich die Wahrscheinlichkeit für mindestens k Fixpunkte berechne, brauche ich nicht zu überprüfen, ob zufällig noch mehr Fixpunkte entstehen).
Insgesam gibt es n! Möglichkeiten für die Permutationen. Also wäre die Wahrscheinlichkeit:

[mm] $\IP(X \ge [/mm] k) = [mm] \frac{\vektor{n\\k}*(n-k)!}{n!} [/mm] = [mm] \frac{1}{k!}$ [/mm]

Damit hätte ich

$E(X) = [mm] \sum_{k=0}^{n}\frac{1}{k!}$. [/mm]

Aber ich glaube das ist falsch, weil ich es nicht explizit ausrechnen kann, und jetzt ja auch noch die Varianz bestimmen soll. Daher meine Frage:

- Stimmen meine Überlegungen?

Grüße und danke für Eure Hilfe,
Stefan

        
Bezug
Erwartungswert und Varianz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:20 Mo 16.11.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de