www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Statistik (Anwendungen)" - Erwartungswert vs Wahrsch.
Erwartungswert vs Wahrsch. < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erwartungswert vs Wahrsch.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:00 Sa 08.03.2014
Autor: gladixy

Hallo liebe Vorhilfe-Community,

ich hab ein kleines Verständnisproblem bezüglich Erwartungswert/Wahrscheinlichkeiten. Das Problem ergab sich im Zuge einer Partie Risiko, weshalb es auch keine formale Aufgabenstellung dafür gibt.

Angenommen ich habe drei normale Würfel (Augen: 1,2,3,4,5,6, alle Würfel identisch). Wie hoch ist die Wahrscheinlichkeit innert drei Würfen mindestens eine 6 zu haben? Ich glaube das entspricht 1- [mm] (5/6)^3. [/mm]

Jetzt hat aber ein Freund von mir gesagt, dass der Erwartungswert eine 6 zu Würfeln innert drei Würfen 0,5 ist. Das macht für mich eben auch irgendwo Sinn. Bei 6 Würfen wird dies am deutlichsten, da man hier ja im Schnitt immer eine 6 hat. Teilt man das durch 2 (hälfte der Würfe) erhält man 0,5.

Ich versteh jetzt überhaupt nicht (sollte das soweit richtig sein) wieso es hier quasi zwei verschiedene Angaben über die Anzahl an 6en innert drei Würfen gibt. Ist denn der Begriff Erwartungswert hier richtig angewandt?

Vielleicht kann ja jemand Licht ins Dunkel bringen ;)

Gruss

glad

        
Bezug
Erwartungswert vs Wahrsch.: Antwort
Status: (Antwort) fertig Status 
Datum: 18:25 Sa 08.03.2014
Autor: hippias


> Hallo liebe Vorhilfe-Community,
>  
> ich hab ein kleines Verständnisproblem bezüglich
> Erwartungswert/Wahrscheinlichkeiten. Das Problem ergab sich
> im Zuge einer Partie Risiko, weshalb es auch keine formale
> Aufgabenstellung dafür gibt.
>  
> Angenommen ich habe drei normale Würfel (Augen:
> 1,2,3,4,5,6, alle Würfel identisch). Wie hoch ist die
> Wahrscheinlichkeit innert drei Würfen mindestens eine 6 zu
> haben? Ich glaube das entspricht 1- [mm](5/6)^3.[/mm]
>  
> Jetzt hat aber ein Freund von mir gesagt, dass der
> Erwartungswert eine 6 zu Würfeln innert drei Würfen 0,5
> ist. Das macht für mich eben auch irgendwo Sinn. Bei 6
> Würfen wird dies am deutlichsten, da man hier ja im
> Schnitt immer eine 6 hat. Teilt man das durch 2 (hälfte
> der Würfe) erhält man 0,5.
>  
> Ich versteh jetzt überhaupt nicht (sollte das soweit
> richtig sein) wieso es hier quasi zwei verschiedene Angaben
> über die Anzahl an 6en innert drei Würfen gibt. Ist denn
> der Begriff Erwartungswert hier richtig angewandt?

Tatsaechlich sind hier zwei Sachen durcheinander gebracht worden. Die Wahrscheinlichkeit fuer mind. eine $6$ bei $3$ Wuerfen hast Du richtig ermittelt.
Der Erwartungswert einer Zufallsgroesse, welche hier die Anzahl der geworfenen $6$ ist, ist aber keine Wahrscheinlichkeit, sondern eben eine Art Durchschnittswert fuer die Zufallsgroesse. Bei Dir also der Anzahl der $6$en: bei $3$ Wuerfen fallen im Durchschnitt $0.5$ Sechsen, bei sechs Wuerfen faellt durchschnittlich eine Sechs.
Das bedeutet aber nicht, dass bei sechs Wuerfen eine $6$ mit $100$ prozentiger Wahrscheinlichkeit faellt! Die W-keit, dass keine $6$ faellt ist immerhin noch [mm] $(\frac{5}{6})^{6}= [/mm] 33.5$ Prozent.

In Deinem Zusammenhang ist der Erwartungswert vielleicht die weniger aussagekraeftige Groesse.

>  
> Vielleicht kann ja jemand Licht ins Dunkel bringen ;)
>  
> Gruss
>  
> glad


Bezug
                
Bezug
Erwartungswert vs Wahrsch.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:44 Sa 08.03.2014
Autor: gladixy

Okay alles klar. Kann es ausserdem sein, dass noch etwas anderes durcheinander ist? Das eine ist ja die Wahrscheinlichkeit mindestens eine 6 zu haben. Beim Erwartungswert hingegen macht man nur eine Aussage darüber genau eine 6 zu haben oder?

Gruss

glad

Bezug
                        
Bezug
Erwartungswert vs Wahrsch.: Antwort
Status: (Antwort) fertig Status 
Datum: 20:27 Sa 08.03.2014
Autor: Sax

Hi,

> Okay alles klar. Kann es ausserdem sein, dass noch etwas
> anderes durcheinander ist? Das eine ist ja die
> Wahrscheinlichkeit mindestens eine 6 zu haben.

Genau das ist es, und ob bei dreimaligem Werfen eine oder zwei Sechsen geworfen werden spielt überhaupt keine Rolle.

> Beim
> Erwartungswert hingegen macht man nur eine Aussage darüber
> genau eine 6 zu haben oder?
>  

Die W., genau eine Sechs zu erzielen, beträgt 25/72.

Der von dir berechnete Erwartungswert E(X)=0,5 bezieht sich auf die Zufallsvariable X, die die Anzahl der Sechsen bei drei Würfen zählt.
Und dabei schlagen solche Serien aus drei Würfen, bei denen zwei oder drei Sechsen erzielt werden, entsprechend kräftig zu Buche.

Gruß Sax.  

> glad


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de