www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Erweiterung-Tangentenbegriff
Erweiterung-Tangentenbegriff < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erweiterung-Tangentenbegriff: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:21 Sa 24.11.2007
Autor: Mandy_90

Hallo,bin ganz neu hier und das ist meine 1.Frage,slo wenn ich i-was flasch mache,sorry.Versuch mich auch ganz und voll an die Regeln zu halte. Also unser Lehrer hat uns in der letzten mthestunde eine Definition aufschreiben lasse,ich habe sie leider nicht verstanden und weiß nciht was damit gemeint sein soll.
Definition:
Eine Tangente an einem Graphen durch einen Punkt P auf dem Graphen ist die beste lineare Annäherung an den Graphen,die durch P verläuft.
Wer lieb wenn mir das Jemand erklren könnte.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Erweiterung-Tangentenbegriff: Antwort
Status: (Antwort) fertig Status 
Datum: 13:34 Sa 24.11.2007
Autor: rainerS

Hallo!

> Also unser Lehrer hat uns in
> der letzten mthestunde eine Definition aufschreiben
> lasse,ich habe sie leider nicht verstanden und weiß nciht
> was damit gemeint sein soll.

>  Definition:
>  Eine Tangente an einem Graphen durch einen Punkt P auf dem
> Graphen ist die beste lineare Annäherung an den Graphen,die
> durch P verläuft.
>  Wer lieb wenn mir das Jemand erklren könnte.

OK, dazu muss man die Definition in ihre Einzelteile zerlegen.
Wir haben den Graphen einer Funktion f(x) und einen Punkt [mm]P=(x_0,y_0)[/mm] auf diesem Graphen.

Lineare Annäherung

Eine lineare Funktion ist von der Form [mm]l(x) = ax+b[/mm], das beschreibt eine Gerade. Eine lineare Annäherung an den Graphen (auch Approximation genannt) ist eine solche Funktion, die nur annähernd den Graphen wiedergibt.

Um das zu verstehen, malst du dir am besten so einen Graphen mal auf und legst verschiedene Geraden durch den Punkt P.
Damit sie durch den Punkt P gehen, muss [mm]l(x_0) = y_0[/mm] sein, also [mm]ax_0+b=y_0[/mm]. Damit ist klar, dass [mm]b = ax_0-y_0[/mm] oder [mm]l(x) = a(x-x_0) +y_0[/mm]. Alle diese Geraden unterscheiden sich nur im Wert von a.

[Dateianhang nicht öffentlich]

Die Frage ist nun: welche dieser Geraden ist die

Beste lineare Annäherung?

Dazu muss man sich klarmachen, welche dieser Geraden bessere und welche schlechtere Annäherungen sind. Ich behaupte einfach, dass eine Annäherung [mm]l_1(x)=a_1(x-x_0)+y_0[/mm] besser ist als eine andere [mm]l_2(x)=a_1(x-x_0)-y_0[/mm], wenn der Unterschied zwischen Graph und Gerade [mm]l_1(x)[/mm] kleiner ist als der Unterschied zwischen Graph und Gerade [mm]l_2(x)[/mm].

Dabei geht es mir nur um den Unterschied in der Nähe des Punktes P (in dem Bild durch die beiden grünen Linien begrenzt), den so ein Graph in einiger Entfernung von P irgnedwie aussehen.

Dazu vergrößerere ich das Bild:

[Dateianhang nicht öffentlich]

In dem Bild ist es die rote Gerade, die am nächsten am Graphen liegt.

Was ist das in Formeln?

Der vertikale Abstand zwischen Funktion f und linearer Annäherung l ist doch
[mm] f(x) - l(x) = f(x) - a(x-x_0) -y_0[/mm].

Da auch der Punkt P auf dem Graphen von f liegt, ist [mm]y_0=f(x_0)[/mm] und daher

[mm] f(x) - l(x) = f(x) - f(x_0) -a (x-x_0) = (x-x_0)*\left(\bruch{f(x) - f(x_0)}{x-x_0} -a\right)[/mm]

Die Aussage heisst also in Formeln, dass der Abstand links in der Nähe von [mm]x_0[/mm] dann am kleinsten ist, wenn a die Steigung der Tangente ist, also [mm]f'(x_0)[/mm].

Ich hoffe, das hilft dir weiter.

  Viele Grüße
    Rainer

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Anhang Nr. 2 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Erweiterung-Tangentenbegriff: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 19:52 Sa 24.11.2007
Autor: Mandy_90

Danke,hab jetzt schon etwas mehr Überblick darüber,worum es geht.Aber ein paar Dinge sind immer noch net danz so klar.Also was meinst du denn mit l(x)... was heißt denn dieses l????Und wie man zu der Formel kommt,kann ich nicht so ganz nachvollziehen.^^

Bezug
                        
Bezug
Erweiterung-Tangentenbegriff: Antwort
Status: (Antwort) fertig Status 
Datum: 23:43 Sa 24.11.2007
Autor: rainerS

Hallo!

> Danke,hab jetzt schon etwas mehr Überblick darüber,worum es
> geht.Aber ein paar Dinge sind immer noch net danz so
> klar.Also was meinst du denn mit l(x)... was heißt denn
> dieses l????

l wie linear. l(x) soll irgendeine Gerade durch den Punkt [mm]P=(x_0,y_0)[/mm] bedeuten. Damit sie durch den Punkt P geht, muss sie die Form [mm]a*(x-x_0)+y_0[/mm] haben.

> Und wie man zu der Formel kommt,kann ich nicht
> so ganz nachvollziehen.^^

Da habe ich den Unterschied zwischen Funktion f und Gerade l im Punkt x ausgerechnet, dabei nur [mm]l(x) = a*(x-x_0)+y_0[/mm] und [mm]y_0=f(x_0)[/mm] eingesetzt und [mm](x-x_0)[/mm] ausgeklammert.

Viele Grüße
   Rainer

Bezug
                                
Bezug
Erweiterung-Tangentenbegriff: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Mo 26.11.2007
Autor: Mandy_90

boah dankeschön,habs schon fast verstanden,aber ich weoß nur nicht woher du die Formel l(x)=a(x-x0)+y  hehast.Ist das ne allgemeine Formel für etwas oder hast du sie von einer anderen umgestellt oder wo kommt die her??^^

Ach ja und ich wollt noch wissen,was hier mit gemeint ist "Eine lineare Annäherung an den Graphen (auch Approximation genannt) ist eine solche Funktion, die nur annähernd den Graphen wiedergibt." Also um genau zu sein,was heißt denn,dass sie den Graphen nur annähernd wiedergibt?Wie könnte man sich das denn vorstellen??
thnx ^^

Bezug
                                        
Bezug
Erweiterung-Tangentenbegriff: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:26 Mo 26.11.2007
Autor: MontBlanc

Hi,

naja die Näherungsfunktion gibt nicht den kompletten Verlauf der Ursprungsfunktion wieder, sondern nur einen Teil (hier einen Punkt) oder nähert sich der Funktion an (vgl. Asymptote).

Lg


Bezug
                                        
Bezug
Erweiterung-Tangentenbegriff: Antwort
Status: (Antwort) fertig Status 
Datum: 11:26 Di 27.11.2007
Autor: rainerS

Hallo!

> boah dankeschön,habs schon fast verstanden,aber ich weoß
> nur nicht woher du die Formel l(x)=a(x-x0)+y  hehast.Ist
> das ne allgemeine Formel für etwas oder hast du sie von
> einer anderen umgestellt oder wo kommt die her??^^

1. Die Funktion soll linear sein, also der Graph eine Gerade. Dann muss sie die Form [mm]l(x)=ax+b[/mm] haben.

2. Diese Gerade soll durch den Punkt [mm]P(x_0,y_0)[/mm], gehen, also [mm]l(x_0) =y_0[/mm]. Daraus ergibt sich [mm]y_0+ax_0+b[/mm].

Wenn du die letzte Gleichung nach b auflöst und in [mm]l(x)=ax+b[/mm] einsetzt ergibt sich [mm]l(x)=a(x-x_0)+y_0[/mm].

> Ach ja und ich wollt noch wissen,was hier mit gemeint ist
> "Eine lineare Annäherung an den Graphen (auch Approximation
> genannt) ist eine solche Funktion, die nur annähernd den
> Graphen wiedergibt." Also um genau zu sein,was heißt
> denn,dass sie den Graphen nur annähernd wiedergibt?Wie
> könnte man sich das denn vorstellen??

Das wollte ich dir mit den beiden Zeichnungen klarmachen: in der zweiten Zeichnung verläuft die Gerade (rot) ziemlich nahe am Graphen der Funktion (schwarz). Du kannst auch sagen, dass der Unterschied zwischen Funktion und Approximation (also die Differenz zwischen f(x) und l(x)) möglichst klein sein soll.

Wie klein, hängt von der Funktion ab, die man betrachtet.

Viele Grüße
   Rainer

Bezug
                                                
Bezug
Erweiterung-Tangentenbegriff: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:11 Di 27.11.2007
Autor: Mandy_90

ok vielen dank,habs jetzt verstanden ^^

Bezug
                                                        
Bezug
Erweiterung-Tangentenbegriff: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:15 Di 27.11.2007
Autor: Mandy_90

OK,hab jetzt verstanden wie das alles geht,aber wofür braucht man den Tangentensteigungen????
greetz^^

ok und noch eine frage is mir grad aufgefallen.Also wenn man die Formel y=ax+b umstellt ,dann kann do ch nicht b=ax-y rauskommen, sondern b=y-ax.Das sind zwei verschiedene sachen oder?^^

Bezug
                                                                
Bezug
Erweiterung-Tangentenbegriff: Antwort
Status: (Antwort) fertig Status 
Datum: 17:19 Di 27.11.2007
Autor: leduart

Hallo
Wenn man irgendwelche Funktionen hat, die etwas bedeuten, ist es oft interessant, wo sie am stärksten steigen. etwa wenn du Benzinverbrauch in Abhängigkeit von Geschwindigkeit hast, willst du wissen wie er steigt, wenn du dein Geschwindigkeit änderst. Oder wie schnell sich ne Grippewelle ausbreitet, da ist nicht nur interessant, wie schnell es ist, sondern auch ,wie es sich ändert.
Viel benutzt wird auch, dass man komplizierte Funktionen  ein Stück weit durch lineare Funktionen, also durch die Tangente Beschreiben kann. z. Bsp ist die Steigung von [mm] \wurzel{x} 1/2*\wurzel{x} [/mm]  wenn du jetzt ohne TR [mm] \wurzel{101} [/mm] ausrechnen willst, sagst du : [mm] \wurzel{100}=10 \wurzel{101} [/mm] ist [mm] 10+1\(2*10)=1,05 [/mm]
ich bin einfach mit der Steigung bei 100 1 weiter gegangen. Das geht so auch noch mit komplizierteren Funktionen.
In der Schule lernt man das leider fast nur an Beispielen, wo man nicht so sieht, warum man die Steigung kennen sollte. oder überhaupt warum man sich für die Funktion selbst interessiert. Aber es gibt eben viele echte Situationen die sich durch mehr oder weniger einfache Funktionen beschreiben lassen, und da ist man dann wirklich daran interessiert wie stark sie wo steigen.
Gruss leduart

Bezug
                                                                        
Bezug
Erweiterung-Tangentenbegriff: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:26 Di 27.11.2007
Autor: Mandy_90

Hey Danke für deine Antwort,ja in der Schule sagen die das halt nicht so genau,deshalb wollt ichs mal wissen. Und was ist nun mit der Formel,weil das bringt mich wirklich durcheinander????Man kann doch nicht die Formel Y=ax+b so umstellen,dass da b=ax-y rauskommt, da müsste doch b=y-ax rauskommen?????

Bezug
                                                                                
Bezug
Erweiterung-Tangentenbegriff: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 Di 27.11.2007
Autor: leduart

Hallo
> Und was
> ist nun mit der Formel,weil das bringt mich wirklich
> durcheinander????Man kann doch nicht die Formel Y=ax+b so
> umstellen,dass da b=ax-y rauskommt, da müsste doch b=y-ax
> rauskommen?????

Ich weiss nicht, auf was sich die Frage bezieht. Aber du hast mit deiner Umformung recht! vielleicht hat sich irgendwo jemand verschrieben? (Auch wir machen -sogar oft- Leichtsinnsfehler.) also immer alles was dir hier jemand vorrechnet nachrechnen!
Gruss leduart


Bezug
                                                                                        
Bezug
Erweiterung-Tangentenbegriff: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:43 Di 27.11.2007
Autor: Mandy_90

ok thnx ich hab schon gedacht,dass Ich jetzt gar nicht mehr durchblicke.Aber is ja net schlimm,wenn jemand nene FehLer macht...keiner is perfekt^^

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de