www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Erzeug. Elemte in Restklassen
Erzeug. Elemte in Restklassen < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erzeug. Elemte in Restklassen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 15:19 Mi 18.03.2009
Autor: Oli12

Aufgabe
Bestimmen Sie erzeugende Elemente in den primen Restklassengruppen
a) [mm] (\IZ/\IZ_{625})^{\times} [/mm]
b) [mm] (\IZ/\IZ_{71^{2}})^{\times} [/mm]
c) [mm] (\IZ/\IZ_{2*71^{2}})^{\times} [/mm]

Hinweis: [mm] [7]_{71} [/mm] ist erzeugendes Element in [mm] (\IZ/\IZ_{71})^{\times} [/mm]

Hi Leute,
Ich hab keine Ahnung wie ich das machen soll. Im Prinzip könnte ich ja alle Elemente der Restklassengruppen bestimmen und damit dann zeigen ob es erzeugende Elemente sind. Aber da sitz ich ja Jahre dran... gibt es denn irgendeine super schnelle (einfache) Methode mit der man zeigen kann, ob es ein erz. Element ist oder nicht?

Eine Komillitonin hat gemeint, alleine die Gruppe [mm] (\IZ/\IZ_{625})^{\times} [/mm] hat schon [mm] 5^{4}-5^{3} [/mm] = 125 Elemente... stimmt das denn überhaupt?

Bitte um Hilfe!
Danke,
Gruß
Oli

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Erzeug. Elemte in Restklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:06 Fr 20.03.2009
Autor: felixf

Hallo Oli!

> Bestimmen Sie erzeugende Elemente in den primen
> Restklassengruppen
>  a) [mm](\IZ/\IZ_{625})^{\times}[/mm]
>  b) [mm](\IZ/\IZ_{71^{2}})^{\times}[/mm]
>  c) [mm](\IZ/\IZ_{2*71^{2}})^{\times}[/mm]
>  
> Hinweis: [mm][7]_{71}[/mm] ist erzeugendes Element in
> [mm](\IZ/\IZ_{71})^{\times}[/mm]

>

>  Hi Leute,
>  Ich hab keine Ahnung wie ich das machen soll. Im Prinzip
> könnte ich ja alle Elemente der Restklassengruppen
> bestimmen und damit dann zeigen ob es erzeugende Elemente
> sind.

Ja, das ist eine Moeglichkeit. Allerdings nicht die beste, wie du selber bemerkst ;-)

> Aber da sitz ich ja Jahre dran... gibt es denn
> irgendeine super schnelle (einfache) Methode mit der man
> zeigen kann, ob es ein erz. Element ist oder nicht?

Wenn du weisst, wieviele Elemente [mm] $(\IZ/\IZ_n)^\times$ [/mm] hat (sagen wir mal $m$), dann kannst du so vorgehen, um zu gucken, ob ein Element $a$ ein erzeugendes Element ist:

1) Seien [mm] $p_1, \dots, p_t$ [/mm] alle Primzahlen, die $m$ teilen.
2) Berechne [mm] $a^{m / p_i} \mod{n}$; [/mm] ist dies 1 fuer ein $i$, so ist $a$ kein erzeugendes Element.
3) Ist [mm] $a^{m / p_i}$ [/mm] niemals 1 modulo $n$ (fuer alle $i$), so ist $a$ ein erzeugendes Element.

Das geht schonmal viel schneller :)

Jetzt gibt es noch ein paar Fakten / Tricks die du eventuell kennst oder nicht kennst, die aber sehr helfen:

a) Ist $a$ ein Erzeuger von [mm] $(\IZ/\IZ_p)^\times$, [/mm] so ist $a$ oder $a + p$ ein Erzeuger von [mm] $(\IZ/\IZ_{p^2})^\times$. [/mm]

(Ich erinnere mich nicht 100%ig an die Aussage, aber so in etwa muesste sie stimmen. Zumindest sind $a$ und $a + p$ zwei Kanidaten die du mal testen kannst.)

b) Ist $a$ ein Erzeuger von [mm] $(\IZ/\IZ_n)^\times$ [/mm] und ist $n$ ungerade, so ist $a$ oder $a + n$ ein Erzeuger von [mm] $(\IZ/\IZ_{2 n})^\times$ [/mm] -- naemlich genau der ungerade von den beiden Werten.

> Eine Komillitonin hat gemeint, alleine die Gruppe
> [mm](\IZ/\IZ_{625})^{\times}[/mm] hat schon [mm]5^{4}-5^{3}[/mm] = 125
> Elemente... stimmt das denn überhaupt?

Ja, das stimmt.

Wenn $n$ und $m$ teilerfremd sind, so hat [mm] $(\IZ/\IZ_{n m})^\times$ [/mm] gerade [mm] $|(\IZ/\IZ_n)^\times|$ [/mm] mal [mm] $|(\IZ/\IZ_m)^\times|$ [/mm] Elemente (das zeigt man z.B. mit dem chinesischen Restsatz), und [mm] $(\IZ/\IZ_{p^n})^\times$ [/mm] hat [mm] $p^n [/mm] - [mm] p^{n - 1}$ [/mm] Elemente (das zeigt man durch ein Abzaehlargument: es gibt genau [mm] $p^{n-1}$ [/mm] Elemente in [mm] $\{ 0, 1, \dots, p^n - 1 \}$, [/mm] die nicht teilerfremd zu [mm] $p^n$ [/mm] sind).

Damit kannst du die Anzahl der Elemente in [mm] $(\IZ/\IZ_n)^\times$ [/mm] ausrechnen fuer jedes $n$, solange du die Primfaktorzerlegung von $n$ bestimmen kannst.

Ich hoffe damit kommst du jetzt weiter :)

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de