www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Erzeugendensystem
Erzeugendensystem < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erzeugendensystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:19 So 25.11.2012
Autor: marcye

Aufgabe
Wir betrachten den Vektorraum der Polynome [mm] R_{\le1}[x] [/mm] und darin die Vektoren (Polynome):

3x+6
2x
0
5x
-3x-6
-4x

Wählen Sie aus der Liste der Polynome drei Polynome so aus, dass diese ein Erzeugendensystem des Vektorraums [mm] R_{\le1}[x] [/mm] der Polynome vom Grad höchstens gleich eins sind.

Ich habe vorher andere Aufgaben gemacht bei denen es um den Vektorraum [mm] R_{\le2}[x] [/mm] ging. Diese habe ich gelöst indem ich 3 linear unabhängige Vektoren gewählt habe, die eine Basis bilden, also auch ein Erzeugendensystem sind.
In diesem Fall gibt es meiner Meinung nach aber nur 2 linear unabhängige Vektoren. Reicht es, da es diesmal um den Vektorraum [mm] R_{\le1}[x] [/mm] geht, nur 2 linear unabhängige Vektoren zu finden und einfach einen beliebigen dritten hinzuzufügen?


Also z.B

-3x-5
-4x
0

Wäre diese Antwort korrekt?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Erzeugendensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 19:34 So 25.11.2012
Autor: itzepo11

Du musst ja eigentlich nur gucken, ob diese wirklich ein EZS bilden.
Ein Polynom in [mm] $R_{\leq 1} \left[X\right]$ [/mm] sieht ja allgemein so aus: $ax +b$ mit $a,b [mm] \in [/mm] R$. $R$ meint die reellen Zahlen!?! (Soll ja ein VR sein).

Jetzt musst du gucken, ob du dies Polynom in den Erzeugenden schreiben kannst, d.h. gilt

$a + bx = [mm] \lambda_1 [/mm] (-3X-5) + [mm] \lambda_2 [/mm] (-4X) + [mm] \lambda_3 [/mm] 0$

Durch Koeffizientenverglich solltest du die [mm] $\lambda_i$ [/mm] rauskriegen, was zeigt, dass dies ein EZS ist.


Bezug
                
Bezug
Erzeugendensystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:20 So 25.11.2012
Autor: marcye

Kannst du mir genauer erklären was du mit Koeffizientenvergleich meinst? Ja es sind die reelen Zahlen gemeint.

Liege ich richtig mit der Annahme dass ich keine 3 linear unabhängigen Vektoren mit den genannten Polynomen bilden kann?
Alle Ansetze die ich bis jetzt gefunden habe zielen darauf ab aus 3 linear unabhängigen Vektoren eine Basis zu bilden, was ja dann auch ein Erzeugendensystem ist. Ich kann bei keinen der Vektoren eine Linearkombination bilden die nur die triviale Lösung hat. So komme ich anscheinend nicht weiter oder?

Bezug
                        
Bezug
Erzeugendensystem: Antwort
Status: (Antwort) fertig Status 
Datum: 12:02 Mo 26.11.2012
Autor: itzepo11

[mm] $a+bX=\lambda_1(-3X+5)+\lambda_2(-4X)+\lambda_30$ [/mm]

Rechte Seite ausrechnen
$a+bX= [mm] 5\lambda_1 [/mm] + [mm] (-3\lambda_1-4 \lambda_2)X$. [/mm]

Wegen Koeffizientenvergleich muss gelten
$a=5 [mm] \lambda_1$ [/mm]
$b= [mm] -3\lambda_1 -4\lambda_2$ [/mm]

Jetzt kannst du [mm] $\lambda_1$ [/mm] und [mm] $\lambda_2$ [/mm] nach a und b aufloesen, was zeigt, dass dies ein EZS ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de