www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Erzeugendensystem und Basis
Erzeugendensystem und Basis < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erzeugendensystem und Basis: hausaufgaben
Status: (Frage) beantwortet Status 
Datum: 17:22 Do 26.04.2007
Autor: wulfstone

Aufgabe
Wir betrachten folgende Teilmengen des  [mm] \IR^{3}: [/mm]

$ U:= [mm] \left\{ \vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 1 \\ 1}, \vektor{1 \\ 0 \\ 0} \right\}$ [/mm]
$ V:= [mm] \left\{ \vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 1 \\ 1}, \vektor{0 \\ 0 \\ 1} \right\}$ [/mm]
$ W:= [mm] \left\{ \vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 1 \\ 0}, \vektor{0 \\ 1 \\ 1}, \vektor{0 \\ 0 \\ 1} \right\}$ [/mm]


Welche dieser Mengen bilden ein Erzeugendensystem und welche eine Basis des [mm] \IR^{3} [/mm]

hallo erstmal,
es soll eigentlich ganz einfach sein,
doch habe ich probleme mir das erzeugendensystem und die basis vorzustellen, bzw. sind unsere definitionen dafür sehr dürftig,

könnte mir mal jemand zumindest an einer menge zeigen wie das geht,

danke

mfg
wulfstone

        
Bezug
Erzeugendensystem und Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:53 Do 26.04.2007
Autor: Bastiane

Hallo wulfstone!

> Wir betrachten folgende Teilmengen des  [mm]\IR^{3}:[/mm]
>  
> [mm]U:= \left\{ \vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 1 \\ 1}, \vektor{1 \\ 0 \\ 0} \right\}[/mm]
>  
> [mm]V:= \left\{ \vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 1 \\ 1}, \vektor{0 \\ 0 \\ 1} \right\}[/mm]
>  
> [mm]W:= \left\{ \vektor{1 \\ 1 \\ 1}, \vektor{0 \\ 1 \\ 0}, \vektor{0 \\ 1 \\ 1}, \vektor{0 \\ 0 \\ 1} \right\}[/mm]
>  
>
> Welche dieser Mengen bilden ein Erzeugendensystem und
> welche eine Basis des [mm]\IR^{3}[/mm]
>  hallo erstmal,
>  es soll eigentlich ganz einfach sein,
>  doch habe ich probleme mir das erzeugendensystem und die
> basis vorzustellen, bzw. sind unsere definitionen dafür
> sehr dürftig,

Naja, aber Definitionen kann man doch nachlesen. Und gerade so elementare Definitionen finden sich in jedem passenden Mathebuch, und auch in Wikipedia und sonst im Internet.

Für ein Erzeugendensystem musst du jeden Vektor des Vektorraums erzeugen können. In deinem Fall hast du den [mm] \IR^3, [/mm] das heißt, du musst in jeder Komponente etwas erzeugen können, bzw. auch jede reelle Zahl erzeugen können. Hättest du also z. B. drei Vektoren: [mm] \vektor{0\\1\\0}, \vektor{0\\0\\0} [/mm] und [mm] \vektor{0\\0\\1}, [/mm] so könntest du für die zweite und dritte Komponente jede relle Zahl erzeugen (mit reellen Koeffizienten in einer Linearkombination), aber egal, welchen Koeffizienten du wählst, du wirst nie eine Zahl außer 0 in der ersten Komponenten erzeugt bekommen. Demnach wäre dies kein Erzeugendensystem, weil eben nur Elemente der Form [mm] \vektor{0\\a\\b} [/mm] für [mm] a,b\in\IR [/mm] erzeugt werden können.

Jede Basis ist auch ein Erzeugendensystem (aber nicht umgekehrt), oder jedes linear unabhängige Erzeugendensystem ist auch eine Basis. Wenn du also etwas hast, was kein Erzeugendensystem ist, kann es auch keine Basis sein. Wenn du ein Erzeugendensystem hast, musst du überprüfen, ob die Vektoren linear unabhängig sind, wenn ja, hast du eine Basis, wenn nein, ist es bloß ein Erzeugendensystem.

In deinem Fall kannst du nun auch noch überlegen, dass alle Basen zu einem Vektorraum genauso viele Elemente haben. Sollten also U oder V eine Basis sein, kann W keine sein, weil W eine Dimension mehr hat. Außerdem kannst du wissen, dass eine Basis des [mm] \IR^3 [/mm] genau 3 Basisvektoren hat, demnach kann W sowieso schon keine Basis sein.

Es gibt da noch einiges anderes, was man sich überlegen kann, ist aber hier vielleicht nicht nötig. Und das kannst du bei Gelegenheit in Bücher oder im Netz lesen.

Viele Grüße
Bastiane
[cap]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de