www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Euklidischer Algorithmus
Euklidischer Algorithmus < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Euklidischer Algorithmus: Formel umstellen / Fehlersuche
Status: (Frage) beantwortet Status 
Datum: 17:38 Do 19.02.2009
Autor: Sneiper

Aufgabe
7*d = 1(mod160)
  d = 23

Hallo,

ich habe dieses Beispiel in einem Buch zur Verschlüsselung von ASCII-Codes gefunden. Jedoch weiß ich nicht wie d=23 zustande kommt. Die Formel habe ich bereits nach d umgestellt:

d = [mm] \bruch{1(mod160)}{7} [/mm]

Mein Ergebnis ist demnach jedoch: [mm] d=\bruch{1}{7} [/mm]
Rechne ich (mod160) eventuell falsch?


MfG und Danke im voraus!
Sneiper


        
Bezug
Euklidischer Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:47 Do 19.02.2009
Autor: schachuzipus

Hallo Sebastian,

> 7*d = 1(mod160)
>    d = 23 [ok]
>  Hallo,
>  
> ich habe dieses Beispiel in einem Buch zur Verschlüsselung
> von ASCII-Codes gefunden. Jedoch weiß ich nicht wie d=23
> zustande kommt. Die Formel habe ich bereits nach d
> umgestellt:
>  
> d = [mm]\bruch{1(mod160)}{7}[/mm]
>  
> Mein Ergebnis ist demnach jedoch: [mm]d=\bruch{1}{7}[/mm]
>  Rechne ich (mod160) eventuell falsch?

Ja, was bedeutet denn diese Schreibweise?

Der "Bruch" ist doch hier nur eine Bezeichnung für das multiplikativ Inverse von 7 modulo 160

Also [mm] $7\cdot{}\underbrace{\frac{1}{7}}_{=7^{-1}}=1 [/mm] \ [mm] \mod(160)$ [/mm] ist gemeint

Nun ist das Inverse von $7$ modulo 160 genau 23, denn [mm] $7\cdot{}23=161\equiv [/mm] 1 \ [mm] \mod(160)$ [/mm]

>  
>
> MfG und Danke im voraus!
>  Sneiper
>  

LG

schachuzipus

Bezug
                
Bezug
Euklidischer Algorithmus: Ähnliche Frage
Status: (Frage) beantwortet Status 
Datum: 18:42 Do 19.02.2009
Autor: Sneiper

Aufgabe
5*d=1(mod2)

[mm] d=\bruch{1(mod2)}{5} [/mm]

Ich bin mir noch nicht wirklich sicher ob ich dich richtig verstanden habe. Wie würde man diese Aufgabe lösen? Was für Rechenschritte muss ich durchführen um d zu erhalten?

MfG Sneiper

Bezug
                        
Bezug
Euklidischer Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 18:57 Do 19.02.2009
Autor: ms2008de

hallo,
also im grunde ist das was du schreibst doch äquivalent zu 5*d=1 in Z2, da 5 aber selbst die klasse von 1 in Z2 besitzt, ist d=1 eine lösung, im grunde genommen bieten dir die menge der ungeraden zahlen eine lösung für d.

viele grüße

Bezug
                        
Bezug
Euklidischer Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 19:03 Do 19.02.2009
Autor: reverend

Hallo Sneiper,

"modulo n" ist eine Angabe über Restklassen. Man schreibt dann üblicherweise auch kein Gleichheitszeichen, sondern ein "äquivalent zu": [mm] \equiv. [/mm]

[mm] 7\equiv 19\equiv -1\equiv 3\mod{4} [/mm]

Diese vier (zufällig gegriffenen) Zahlen lassen bei Teilung durch vier alle den Rest 3. Man könnte auch sagen, zu jeder dieser Zahlen kann man 1 hinzuzählen oder 3 abziehen, um eine durch 4 teilbare Zahl zu bekommen.

So gibt es in dieser Rechenweise keine Brüche. Du kannst nur dann durch eine Zahl teilen, wenn beide Seiten der Äquivalenz ohne Rest durch diese Zahl teilbar sind. Dennoch gibt es oft (aber nicht immer) eine Umkehrung zur Multiplikation, nämlich die Multiplikation mit dem multiplikativen Inversen.

sei [mm] a=5\mod{7}. [/mm] Dann ist 3 das multiplikativ Inverse, denn es gilt: [mm] 5*3=15\equiv 1\mod{7}. [/mm]

Man ermittelt es über den []Erweiterten euklidischen Algorithmus.

Grüße,
reverend

Bezug
                
Bezug
Euklidischer Algorithmus: Rechenproblem
Status: (Frage) beantwortet Status 
Datum: 13:35 Sa 21.02.2009
Autor: ALDI666

Hi,

ich hänge im moment an der rechnung [mm] 7\*d=1(mod180) [/mm]
meine inverse muss doch ganzzahlig sein ich komme da aber auf ne nachkommastelle.
und wenn ich jetzt die Rechnung in stimmige [mm] 7\*d=2(mod180) [/mm]  (d=26) stimmt mein endergebnis nicht mehr

Danke schonmal =)

Bezug
                        
Bezug
Euklidischer Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 Sa 21.02.2009
Autor: angela.h.b.


> Hi,
>  
> ich hänge im moment an der rechnung [mm]7\*d=1(mod180)[/mm]
>  meine inverse muss doch ganzzahlig sein ich komme da aber
> auf ne nachkommastelle.

Hallo,

[willkommenmr].

Das Problem kann nur ein Rechenfehler sein oder die falsche Durchführung des Algorithmus.

Genaueres kann man nur sagen, wenn man Deine Rechnung sieht.

Gruß v. Angela


>  und wenn ich jetzt die Rechnung in stimmige [mm]7\*d=2(mod180)[/mm]
>  (d=26) stimmt mein endergebnis nicht mehr
>  
> Danke schonmal =)


Bezug
                                
Bezug
Euklidischer Algorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:18 Sa 21.02.2009
Autor: ALDI666

wieso meine rechnung sehen? ^^ die rechnung IST [mm] 7\*d=1(mod180) [/mm]
^^ nur das ich auf ein ergebnis mit nachkommastelle komme und das kann meiner meinung nach nicht korrekt sein

MFG    ALDI

Bezug
                                        
Bezug
Euklidischer Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 Sa 21.02.2009
Autor: angela.h.b.


> wieso meine rechnung sehen? ^^ die rechnung IST
> [mm]7\*d=1(mod180)[/mm]

Hallo,

das ist wohl eher die zu lösende Aufgabe, oder?

>  ^^ nur das ich auf ein ergebnis mit nachkommastelle komme
> und das kann meiner meinung nach nicht korrekt sein

Meiner Meinung nach auch nicht. Denn wenn Du mod 180 rechnest, gibt es gar keine Kommazahlen.

Daher gehe ich davon aus, daß Du beim erweiterten euklidischen Algorithmus etwas verkehrt gemacht hast, und deshalb wollte ich ihn sehen - Du mußt ihn natürlich nicht zeigen, wenn Du nicht möchtest.

Achso:  falls Du keinen Euklidischen Algorithmus durchführen möchtest, kannst Du natürlich auch für d alle natürlichen Zahlen zwichen 0 und 179 durchprobieren.

Gruß v. Angela







Bezug
                                                
Bezug
Euklidischer Algorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:30 Sa 21.02.2009
Autor: ALDI666

achso sry
Ich rechne das immer so das ich  mehr oe rminder im kopf (bzw mit dem taschenrechner) danach suche weil wir sowas noch garnicht inner schule hatten und ich EIG garnicht weiß wie das funktioniert.
mein ergebnis wäre 181/7=25,8574...
tja und keine ahnung xD
nen fachbuch haben wir leider nicht und Wiki oder andere Foren sind zu hoch für mich (mathe aufm letzten zeugnis 1 punkt)
und ich brauche das für die letzte rechnung meiner facharbeit ;-)

MFG    ALDI

Bezug
                                                        
Bezug
Euklidischer Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 Sa 21.02.2009
Autor: angela.h.b.


> achso sry
>  Ich rechne das immer so das ich  mehr oe rminder im kopf
> (bzw mit dem taschenrechner) danach suche weil wir sowas
> noch garnicht inner schule hatten und ich EIG garnicht weiß
> wie das funktioniert.
>  mein ergebnis wäre 181/7=25,8574...
>  tja und keine ahnung xD

Hallo,

7*d=1 mod 180

bedeutet, daß Du ein d finden sollst, so daß  7*d = (Vielfaches von 180) + 1   ist.

Du kannst jetzt losprobieren, für welche Zahl k  die Zahl k*180 + 1 durch 7 teilbar ist.

(1*180 + 1):7= 25,86   geht nicht
(2*180 + 1):7= ...
(3*180 + 1):7=
(4*180 + 1):7= ...
(5*180 + 1):7=

Keine Angst, Du wirst bald fündig. Rechts steht dann das gesuchte d.

Gruß v. Angela

Bezug
                                                                
Bezug
Euklidischer Algorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:54 Sa 21.02.2009
Autor: ALDI666


7*d=1 mod 180

bedeutet, daß Du ein d finden sollst, so daß  7*d = (Vielfaches von 180) + 1   ist.

Du kannst jetzt losprobieren, für welche Zahl k  die Zahl k*180 + 1 durch 7 teilbar ist.

(1*180 + 1):7= 25,86   geht nicht
(2*180 + 1):7= ...
(3*180 + 1):7=
(4*180 + 1):7= ...
(5*180 + 1):7=

--> das würde ja bedeuten das es mehrere ergebnise gibt da es mehrere teilbare faktoren gibt... ich hab das spielchen eben schnell mit dem taschenrechner bis 25 getrieben und da hatte ich schon 4 treffer...
nämlich die 4, die 11, die 18 und die 25
was is da nun das ergebnis? die 103 die bei der 4 als ergebnis auftaucht oder die 283 die bei 11 berechnet wird?

MFG   ALDI

Bezug
                                                                        
Bezug
Euklidischer Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 15:01 Sa 21.02.2009
Autor: angela.h.b.


>
> 7*d=1 mod 180
>  
> bedeutet, daß Du ein d finden sollst, so daß  7*d =
> (Vielfaches von 180) + 1   ist.
>  
> Du kannst jetzt losprobieren, für welche Zahl k  die Zahl
> k*180 + 1 durch 7 teilbar ist.
>  
> (1*180 + 1):7= 25,86   geht nicht
>  (2*180 + 1):7= ...
>  (3*180 + 1):7=
>  (4*180 + 1):7= ...
>  (5*180 + 1):7=
>  
> --> das würde ja bedeuten das es mehrere ergebnise gibt da
> es mehrere teilbare faktoren gibt... ich hab das spielchen
> eben schnell mit dem taschenrechner bis 25 getrieben und da
> hatte ich schon 4 treffer...
>  nämlich die 4, die 11, die 18 und die 25
>  was is da nun das ergebnis? die 103 die bei der 4 als
> ergebnis auftaucht oder die 283 die bei 11 berechnet wird?

Hallo,

wie Du bemerkt hast, gibt es mehrere Zahlen die es tun, Du wirst sehr viele finden.

Es sind aber 103 und 283 kongruent mod 180, denn 283=1*180 + 103.

Wenn man mod 180 rechnet, gibt man die Zahlen normalerweise so an, daß sie zwischen 0 und 179 liegen,

es sei denn, es sind aus irgendeinem grund alle natürlichen Zahlen gesucht, die diese Gleichung lösen.

Gruß v. Angela




Bezug
                                                                                
Bezug
Euklidischer Algorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:09 Sa 21.02.2009
Autor: ALDI666

demnach wäre ja 103 die richtige lösung, aber kann das sein? weil ich versuche gerade eine rsa-verschlüsselung nachzurechnen für die facharbeit und mein nächster schritt wäre jetzt 42^103(mod209) auszurechnen -_-
das ist ja schon fast nichtmehr menschenmöglich (finde ich)
und am ende muss dann auch noch 74 rauskommen ^^

und iwie finde ich passt die rechnung auch nich zu dem beispiel am anfang der frage hier... von sneiper2000
der fragte ja danach ob in seinem fall d=23 richtig is was es auch war, nur warum, und dort ist ein anderer rechenschritt den wir verfolgen.

MFG   ALDI

Bezug
                                                                                        
Bezug
Euklidischer Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 15:36 Sa 21.02.2009
Autor: angela.h.b.


> demnach wäre ja 103 die richtige lösung, aber kann das
> sein?

Hallo,

ja.

Du kannst Dich davon überzeigen, daß 7*103= 4*180 +1 ist, also ist 7*103 =1 (mod 180).

> weil ich versuche gerade eine rsa-verschlüsselung
> nachzurechnen für die facharbeit und mein nächster schritt
> wäre jetzt 42^103(mod209) auszurechnen -_-

Das könnte man sich ja etwas zerlegen in [mm] 2^{103}*3^{103}*7^{103} [/mm] oder ähnliches, und sich dann über kleinere Potenzen vorarbeiten.

>  das ist ja schon fast nichtmehr menschenmöglich (finde
> ich)
>  und am ende muss dann auch noch 74 rauskommen ^^
>  
> und iwie finde ich passt die rechnung auch nich zu dem
> beispiel am anfang der frage hier... von sneiper2000
>  der fragte ja danach ob in seinem fall d=23 richtig is was
> es auch war, nur warum,

Er hatte die Aufgabe 7*d=1 mod (160) vorgelegt, und es ist  7*23=1*180 + 1.

>  und dort ist ein anderer
> rechenschritt den wir verfolgen.

Ich weiß nicht, was Du mit anderem Rechenschritt meinst.

Gruß v. Angela



>  
> MFG   ALDI


Bezug
                                                                                                
Bezug
Euklidischer Algorithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:42 Sa 21.02.2009
Autor: ALDI666

So ich hoffe das klappt jetzt alles vielen dank für die hilfe =)
ich werde jetzt erstmal in rechnungen versinken (denke das mit 42^103 wird ne weile dauern^^)

MFG   ALDI

Bezug
                                                                                                
Bezug
Euklidischer Algorithmus: Potenzzerlegung
Status: (Frage) beantwortet Status 
Datum: 16:00 Sa 21.02.2009
Autor: ALDI666

Ich hab noch so n problem entdeckt ^^
ist 103 nicht ne Primzahl?
wenn ich jetzt 24^103 ausrechnen will (ich hatte eben nen dreher) kann ich die 24 zwar in [mm] 2\*2\*2\*3 [/mm] zerlegen aber die 103 ist ja nich zerlegbar, und das schafft mein taschenrechner nicht und der umrechner ausm netz leider auch nich.
was kann ich tun?
kann ich 103 einfach in 100 und 3 zerlegen sodass ich dann 100 zerlege in [mm] 2\*5\*5\*2 [/mm] und dann einfach noch [mm] \+3 [/mm] rechne?
oder funktioniert das das ich 103 in 8+8+8+8+8+8+8+8+8+8+8+8+2+2+2+1 zerlege und dann [mm] 24^8*24^8*[...]*24^1 [/mm] rechne?

MFG   ALDI

Bezug
                                                                                                        
Bezug
Euklidischer Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 16:55 Sa 21.02.2009
Autor: angela.h.b.


> Ich hab noch so n problem entdeckt ^^
>  ist 103 nicht ne Primzahl?

Hallo,

ja.


>  kann ich 103 einfach in 100 und 3 zerlegen sodass ich dann
> 100 zerlege in [mm]2\*5\*5\*2[/mm] und dann einfach noch [mm]\+3[/mm]
> rechne?

Ja das kannst Du tun.

>  oder funktioniert das das ich 103 in
> 8+8+8+8+8+8+8+8+8+8+8+8+2+2+2+1 zerlege und dann
> [mm]24^8*24^8*[...]*24^1[/mm] rechne?

Auch das kannst Du machen.

Ich habe eben ausgerechnet, daß [mm] 24^3= [/mm] 30 mod 209 ist,

Jetzt könnte ich rechnen  [mm] 24^{103}=24^{3*34 +2}= [/mm] 30^34 * [mm] 24^2=30^34 [/mm] *158= ...      Jetzt könnte man z.b [mm] 30^3=39 [/mm] mod 209 nutzen, und sich langsam weiter vorarbeiten.

Gruß v. Angela

>  
> MFG   ALDI


Bezug
                                                                                                                
Bezug
Euklidischer Algorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:35 Sa 21.02.2009
Autor: ALDI666

Ich habe jetzt die 103 zerlegt runter bis auf [mm] 24^4\*24^4\*[...]\*24^1 [/mm]
hab dann erstmal jedes einzelne aufgelöst zu 93, dann immer drei 93er zusammengefasst zu 125.
da kam dann raus
[mm] 125\*125\*125\*125\*125\*125\*125\*80\*158\*158\*158\*24 [/mm]
das hab ich dann weiter vereinfacht zu
[mm] 20\*20\*169\*142 [/mm]
und dafür kam dann das ergebnis 39 raus aber es MUSS 74 rauskommen... was habe ich jetzt schonweider falsch gemacht?
(alles (mod209)

MFG   ALDI

Bezug
                                                                                                                        
Bezug
Euklidischer Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:42 Sa 21.02.2009
Autor: angela.h.b.


> Ich habe jetzt die 103 zerlegt runter bis auf
> [mm]24^4\*24^4\*[...]\*24^1[/mm]

Hallo,

103= 25*4 + 3.

Da könnte ein Fehler sein.

Gruß v. Angela


>  hab dann erstmal jedes einzelne aufgelöst zu 93, dann
> immer drei 93er zusammengefasst zu 125.
>   da kam dann raus
>  [mm]125\*125\*125\*125\*125\*125\*125\*80\*158\*158\*158\*24[/mm]
>  das hab ich dann weiter vereinfacht zu
>  [mm]20\*20\*169\*142[/mm]
>  und dafür kam dann das ergebnis 39 raus aber es MUSS 74
> rauskommen... was habe ich jetzt schonweider falsch
> gemacht?
>  (alles (mod209)
>  
> MFG   ALDI


Bezug
                                                                                                                                
Bezug
Euklidischer Algorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:49 Sa 21.02.2009
Autor: ALDI666

ne leider nicht das hab ich auch einmal durchgerechnet also:
[mm] 24^2\*24^5\*24^5\*24^2+24^3 [/mm]
[mm] 158\*144\*144\*158+30 [/mm]
[mm] 180\*180+30 [/mm]
5+30=35

da fehlen mir 40 xD
oder hab ich mich da iwo verrechnet?

> > Ich habe jetzt die 103 zerlegt runter bis auf
> > [mm]24^4\*24^4\*[...]\*24^1[/mm]
>  
> Hallo,
>  
> 103= 25*4 + 3.
>  
> Da könnte ein Fehler sein.
>  
> Gruß v. Angela
>  
>
> >  hab dann erstmal jedes einzelne aufgelöst zu 93, dann

> > immer drei 93er zusammengefasst zu 125.
>  >   da kam dann raus
>  >  
> [mm]125\*125\*125\*125\*125\*125\*125\*80\*158\*158\*158\*24[/mm]
>  >  das hab ich dann weiter vereinfacht zu
>  >  [mm]20\*20\*169\*142[/mm]
>  >  und dafür kam dann das ergebnis 39 raus aber es MUSS 74
> > rauskommen... was habe ich jetzt schonweider falsch
> > gemacht?
>  >  (alles (mod209)
>  >  
> > MFG   ALDI
>  


Bezug
                                                                                                                                        
Bezug
Euklidischer Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 18:02 Sa 21.02.2009
Autor: angela.h.b.


> ne leider nicht das hab ich auch einmal durchgerechnet
> also:
>  [mm]24^2\*24^5\*24^5\*24^2+24^3[/mm]

Oh weh.

Bitte eine Portion MBPotenzgesetze für Dich.

Du willst doch ausrechnen

[mm] 24^{103} =24^{25*4 +3} =24^{25*4} \* 24^3 ={24^4}^{25}\* 24^3. [/mm]


Da oben rechnest Du gerade [mm] 24^{2+5+5+2}+24^3= 24^{14} [/mm] + [mm] 24^3 [/mm] aus.

Gruß v. Angela



Bezug
                                                                                                                                                
Bezug
Euklidischer Algorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:38 Sa 21.02.2009
Autor: ALDI666

Aber ich muss das ja zerlegen bis min hoch 7 weil ich alles drüber nicht berechnen kann...
wiso funktioniert das nicht?

MFG   ALDI

Bezug
                                                                                                                                                        
Bezug
Euklidischer Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Sa 21.02.2009
Autor: angela.h.b.


> Aber ich muss das ja zerlegen bis min hoch 7 weil ich alles
> drüber nicht berechnen kann...
>  wiso funktioniert das nicht?

Hallo,

ziemlich kryptisch, Deine Frage.

Mal sehen, ob ich erraten habe, worum es geht, falls nicht, müßtest Du sie nochmal verständlich stellen.

Es ist doch  $ [mm] 24^{103} ={24^4}^{25}* 24^3. [/mm] $ [mm] =\underbrace{24^4*24^4* ... *24^4}_{25mal} [/mm] * [mm] 24^3. [/mm]

Hier hast Du keine hohen Potenzen von 24.

Gruß v. Angela




>  
> MFG   ALDI


Bezug
                                                                                                                                                                
Bezug
Euklidischer Algorithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:57 Sa 21.02.2009
Autor: ALDI666

das war schon meine frage aber ich hab das jetzt nochmal durchgerechnet und bekomme jetzt 7 raus -_-
meine rechenschritte waren [mm] 24^4 [/mm] (25mal) [mm] \*24^3 [/mm]
das sind in (mod209) [mm] 93\*30 [/mm] (nur die 93 halt 25 mal^^)
dann hab ich [mm] (93\*93\*93\*93)=130 [/mm] also
[mm] 130\*130\*130\*130\*130\*93\*30 [/mm]
was dann [mm] 201\*180\*73=7 [/mm] ergibt
(alles mod209)
und 7 is ja wieder das falsche ergebnis :(

MFG    ALDI

Bezug
                                                                                                                                                                        
Bezug
Euklidischer Algorithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Sa 21.02.2009
Autor: angela.h.b.


> das war schon meine frage aber ich hab das jetzt nochmal
> durchgerechnet und bekomme jetzt 7 raus -_-

Hallo,

ich kann Dir nicht versprechen, daß 74 herauskommt, ich hab's nicht gerechnet. (Nachtrag: aber im Verlaufe des Schreibens diese Posts unter Verwendung Deiner Ergebnisse doch bekommen.)

>  meine rechenschritte waren [mm]24^4[/mm] (25mal) [mm]\*24^3[/mm]
>  das sind in (mod209) [mm]93\*30[/mm] (nur die 93 halt 25 mal^^)

Aha. Du meinst [mm] 93^{25}*30. [/mm]

>  dann hab ich [mm](93\*93\*93\*93)=130[/mm] also

[mm] 93^4=130 [/mm]

>  [mm]130\*130\*130\*130\*130\*93\*30[/mm]

Das ist dann dasselbe wie [mm] 93^4\*93^4\*93^4\*93^4\*93^4\*93\*30= 93^{20}*93*30 [/mm] = [mm] 93^{21}*30. [/mm]

Ich erinnere mich allerdings dunkel, daß Du eigentlich [mm] 93^{25}*30 [/mm] ausrechnen wolltest...

Wenn Du so schlampig arbeitest, kann ja nicht das richtige Ergebnis herauskommen!

Gruß v. Angela


>  was dann [mm]201\*180\*73=7[/mm] ergibt
>  (alles mod209)
>  und 7 is ja wieder das falsche ergebnis :(
>  
> MFG    ALDI


Bezug
                                                                                                                                                                                
Bezug
Euklidischer Algorithmus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:12 Mo 23.02.2009
Autor: ALDI666

Vielen dank für die aufwändige und zeitraubende antwort (ich war wohl gegen ende der rechnung etwas unterzuckert, eig hät ich das mit den potenzgesetzen wissen müssen^^)

Vielen dank =)

MFG   ALDI

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de