Euler-Cauchy-Verfahren < DGL < Numerik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:43 Mi 09.03.2005 | Autor: | Morpheus |
Hallo,
Hab grad versucht eine Normalparabel, die eine autonome Diffgl. lösen soll, mit dem Euler-Cauchy-Verfahren anzunähern! Nur blöd, dass ich in 0/0 starten wollte, denn so wie es aussieht bleiben die Werte meiner Annährung alle 0, was einer Normalparabel eher nicht entspricht
Hab mir dann noch überlegt, dass dies bei jeder Lösung einer Diffgleichung mit x'(t)=0 für irgendein t aus [a,b] zu Problemen führen muss!
Stimmt das so oder hab ich was falsch verstanden!
|
|
|
|
Hallo Morpheus,
Aus deinen Ausführungen entnehme ich mal das Du [mm] y'=2\wurzel{y} [/mm] als DGl betrachtet lösen wolltest. Dann wäre deine Lösung mit dem gewählten Anfangswert auch nicht weiter verwunderlich da es nat. keine eindeutige Lösung der DGL mit diesem AW gibt sondern [mm] y=ax^2 [/mm] a={0,1} Lösungen wären und für a=0 kommt genau deine Lösung raus. Der Satz von Picard Lindelöff wäre nicht anwendbar da die Lipschitzstetigkeit in 0 nicht gegeben ist.
gruß
mathemaduenn
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 19:33 Fr 11.03.2005 | Autor: | Morpheus |
Thx für die Antwort,
Also funktionieren die Runge-Cutta-Verfahren nur bei eindeutiger Lösbarkeit?
Kann mir auch jemand meine zweite Frage beantworten: Sollte die Lösung der autonomen Diffgl. eine Extrestelle besitzen und einer meiner Gitterpunkte ist diese Extremstelle, dann müsste das Verfahren doch scheitern, weil es für die darauf folgenden Gitterpunkte immer denselben Wert liefern oder?
Zum Abschluss noch eine Grundsatzfrage:
Beim EC-Verfahren starte ich mit einem bestimmten x(t0) und hab dazu die exakte Steigung, die ja durch die Diffgl. gegeben wird. Der nächste Punkt ist ja dann nur eine Näherung der Funktion. Nun bestimmt man ja die Steigung an diesem Punkt wiederum durch die Diffgl. Aber dieser Punkt ist ja nur eine Näherung!!! Heißt es also, dass man quasi vom Näherungspunkt aus waagrecht nach links läuft, bis man auf die Lösung trifft und dann die Steigung abliest oder läuft man senkrecht nach oben bis man auf die Lösung trifft und dann nimmt man dort die Steigung????
Also mir gehts eher um die grafische Deutung des Verfahrens....
Thx Morpheus
|
|
|
|
|
Hallo Morpheus,
> Also funktionieren die Runge-Cutta-Verfahren nur bei
> eindeutiger Lösbarkeit?
Über Lösbarkeit/ Eindeutigkeit sollte man sich gegebenenfalls vorher Gedanken machen. denn wie soll das num. Verfahren "wissen" welche der richtigen Lösungen der Differentialgleichung Du erhalten willst?
> Kann mir auch jemand meine zweite Frage beantworten: Sollte
> die Lösung der autonomen Diffgl. eine Extrestelle besitzen
> und einer meiner Gitterpunkte ist diese Extremstelle, dann
> müsste das Verfahren doch scheitern, weil es für die darauf
> folgenden Gitterpunkte immer denselben Wert liefern oder?
Du hast eine autonome DGL y'=F(y) mit F(a)=0 also eine Extremstelle falls die Funktion irgendwann den Wert a annimmt. Angenommen Du nimmst den Wert a als Anfangswert. Dann ist y=a offensichtlich eine ganz "normale" Lösung der Differentialgleichung. Da würde ich nicht unbedingt von scheitern sprechen. Falls der Wert "zufällig" getroffen wird hast Du natürlich recht. Aber die eigentliche Frage ist doch Gibt's sowas überhaupt - Also Autonome DGL mit Extremstellen?
gruß
mathemaduenn
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:01 Sa 12.03.2005 | Autor: | Morpheus |
Thx für die Info... Gruß Morpheus
|
|
|
|