www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Laplace-Transformation" - Eulersche Gammafunktion
Eulersche Gammafunktion < Laplace-Transformation < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eulersche Gammafunktion: Tipps und Ansätze
Status: (Frage) beantwortet Status 
Datum: 16:18 Mi 27.05.2009
Autor: mahone

Aufgabe
Die Eulersche Gammafunktion ist für x>0 definiert durch Γ(x)= [mm] \integral_{0}^{\infty}{t^{x-1}*e^{-t} dt} [/mm]
Es gillt die Rekursionsformel (Was ist das?) Γ (x+1)=x*Γ(x)

Ermitteln Sie den Wert des Integrals [mm] \integral_{0}^{\infty}{x^2*e^{1,71-4,83x} dx} [/mm]

Hallo Zusammen.
Ich bin immer noch dabei Mathestoff nachzuholen und habe gerade frisch mit den Thema Laplace Transformationen begonnen. Nun beschäftigt mich diese Aufgabe. Was genau ist eine Rekursionsformel und was muss ich mit dieser anstellen? Und wie würdet ihr überhaupt eine solche Aufgabe angehen/ lösen????

Viele Grüße ... Helft mir ;)

PS: Die Werte in den Klammern sollten eigentlich hochgestellt sein.

        
Bezug
Eulersche Gammafunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:46 Mi 27.05.2009
Autor: MathePower

Hallo mahone,

> Die Eulersche Gammafunktion ist für x>0 definiert durch
> Γ(x)= [mm]\integral_{0}^{\infty}{t^{x-1}*e^{-t} dt}[/mm]
>  Es
> gillt die Rekursionsformel (Was ist das?) Γ
> (x+1)=x*Γ(x)
>  
> Ermitteln Sie den Wert des Integrals
> [mm]\integral_{0}^{\infty}{x^2*e^{1,71-4,83x} dx}[/mm]
>  
> Hallo Zusammen.
>  Ich bin immer noch dabei Mathestoff nachzuholen und habe
> gerade frisch mit den Thema Laplace Transformationen
> begonnen. Nun beschäftigt mich diese Aufgabe. Was genau ist
> eine Rekursionsformel und was muss ich mit dieser
> anstellen? Und wie würdet ihr überhaupt eine solche Aufgabe
> angehen/ lösen????

Eine Rekursionsformel ist eine Funktionsvorschrift , wie sich das n+1.  Folgenglied
aus den vorherigen n Folgengliedern berechnen läßt.

[mm]a_{n+1}=f\left( \ a_{0}, ... , a_{n} \right)[/mm]

Siehe hierzu: []Rekursion

Nun zunächst ist das gegeben Integral auf die Form der
Eulerschen Gammafunktion zu bringen.
Um dieses Integral dann auszurechnen wird dann die Rekursionsformel verwendet.


>  
> Viele Grüße ... Helft mir ;)
>  
> PS: Die Werte in den Klammern sollten eigentlich
> hochgestellt sein.


Gruß
MathePower

Bezug
                
Bezug
Eulersche Gammafunktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:22 Mi 27.05.2009
Autor: mahone

Hey. Danke für die Antwort. Die Vorgehensweise ist also geklärt aber wie bringe ich das Integral auf die Form der Gammafunktion? LG

Bezug
                        
Bezug
Eulersche Gammafunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:36 Mi 27.05.2009
Autor: MathePower

Hallo mahone,

> Hey. Danke für die Antwort. Die Vorgehensweise ist also
> geklärt aber wie bringe ich das Integral auf die Form der
> Gammafunktion? LG

Ziehe zunächst den konstanten Faktor  vor das Integral.
Dann musst Du noch den Exponenten substituieren.

Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Laplace-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de