www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Eulersche Identität
Eulersche Identität < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eulersche Identität: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:29 Mi 04.12.2013
Autor: Hing

Aufgabe
Totzeitglied [mm] \vmat{ e^{-j\omega T_{t}} }=1 [/mm]

Hallo,
ich möchte den Amplitudengang eines Totzeitglieds verstehen. Ich habe die Lösung oben, verstehe aber nicht wie die 1 zustande kommt.
Mir ist klar das nur eine Zeitverzögerung vorhanden ist, die den Eingangswert nicht verändert. Aber für mich ist [mm] \omega [/mm] im Bodediagramm eine Variable die klassisch eine Sinusfunktion darstellt.

Ich habe schon eine Menge "Zutaten", aber irgendwie kriege ich die Kurve nicht. Was ich weiss:

LaPlace Verschiebungssatz: [mm] e^{-j\omega a} [/mm]

Eulersche Identität: [mm] \vmat{ e^{j\pi}}=-1 [/mm] oder [mm] \vmat{ e^{-j\pi}}=1 [/mm]

Damit kann man sagen [mm] \pi [/mm] = [mm] \omega T_{t} [/mm]

Und wenn ich daran denke das bei Zeigerdiagrammen [mm] e^{j\omega t} [/mm] im Kreisdiagramm rumsaust, dann kann ich nicht verstehen wie [mm] sin(\omega T_{t}) [/mm] = konstant sein kann [mm] (\vmat{ e^{-j\omega T_{t}} }= -sin(\omega T_{t}))? [/mm]





        
Bezug
Eulersche Identität: Antwort
Status: (Antwort) fertig Status 
Datum: 15:10 Mi 04.12.2013
Autor: Al-Chwarizmi


> Totzeitglied [mm]\vmat{ e^{-j\omega T_{t}} }=1[/mm]
>  Hallo,
>  ich möchte den Amplitudengang eines Totzeitglieds
> verstehen. Ich habe die Lösung oben, verstehe aber nicht
> wie die 1 zustande kommt.
>  Mir ist klar das nur eine Zeitverzögerung vorhanden ist,
> die den Eingangswert nicht verändert. Aber für mich ist
> [mm]\omega[/mm] im Bodediagramm eine Variable die klassisch eine
> Sinusfunktion darstellt.
>  
> Ich habe schon eine Menge "Zutaten", aber irgendwie kriege
> ich die Kurve nicht. Was ich weiss:
>  
> LaPlace Verschiebungssatz: [mm]e^{-j\omega a}[/mm]    [haee]

Ich erkenne da keinen Satz, sondern nur einen Term !
  

> Eulersche Identität: [mm]\vmat{ e^{j\pi}}=-1[/mm] oder [mm]\vmat{ e^{-j\pi}}=1[/mm]    [haee]

Das stimmt nur zum Teil. Richtig wäre:

[mm] e^{j\pi}}\ =\ e^{-j\pi}\ =\ -1[/mm]

[mm]\vmat{ e^{j\pi}}\ =\ \vmat{ e^{-j\pi}}=1[/mm]

  

> Damit kann man sagen [mm]\pi[/mm] = [mm]\omega T_{t}[/mm]
>  
> Und wenn ich daran denke das bei Zeigerdiagrammen
> [mm]e^{j\omega t}[/mm] im Kreisdiagramm rumsaust, dann kann ich
> nicht verstehen wie [mm]sin(\omega T_{t})[/mm] = konstant sein kann

Dies hat doch auch niemand behauptet, oder ?

> [mm](\vmat{ e^{-j\omega T_{t}} }= -sin(\omega T_{t}))?[/mm]


Hallo Hing,

beim Thema "Totzeitglied" im technischen Sinn kann ich
zwar nicht mitreden, ohne mir das Thema zuerst näher
angeschaut zu haben.
Mathematisch gesehen ist aber deine obige erste Frage
ganz leicht zu beantworten:

Die Gleichung    [mm]\vmat{ e^{-j\omega T_{t}} }=1[/mm]

gilt einfach deshalb, weil  [mm]\vmat{ e^{j*x} }=1[/mm]
für alle reellen Werte von x . Das kann man zum Beispiel
folgendermaßen begründen:

Aus  $\ z\ =\ [mm] e^{j*x}\ [/mm] =\ c+j*s$  ,  wobei  $\ c=cos(x)$  und   $\ s=sin(x)$

folgt:       $\ |z|\ =\ [mm] \sqrt{c^2+s^2}\ [/mm] =\ 1$

("trigonometrischer Pythagoras")

LG ,   Al-Chw.




Bezug
                
Bezug
Eulersche Identität: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:11 Mi 04.12.2013
Autor: Hing

vielen dank für die antwort.

da hätte ich auch selbst drauf kommen können. *schäm*

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de