www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Eulersche Phi-Funktion
Eulersche Phi-Funktion < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eulersche Phi-Funktion: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:39 Mi 07.05.2008
Autor: grenife

Aufgabe
Gegeben sei die Eulersche [mm] $\varphi$-Funktion [/mm] sowie zwei natürliche Zahlen [mm] $m,n\in\mathbb{N}$. [/mm] Beweisen Sie:
[mm] $\varphi(mn)\cdot\varphi (ggT(m,n))=\varphi (m)\cdot \varphi (m)\cdot [/mm] ggT(m,n)$

Hallo zusammen,

bräuchte einen kleinen Tipp bei diesem Beweis. Für den Fall, dass $m,n$ teilerfremd sind, ist der Beweis einfach: In diesem Fall folgt aus der Multiplikativität der [mm] $\varphi$-Funktion, [/mm] dass
[mm] $\varphi(mn)=\varphi(m)\cdot \varphi(n)$ [/mm] gilt. Außerdem ist [mm] $\varphi (ggT(m,n)=\varphi [/mm] (1)=1=ggt(m,n)$.

Nur leider komme ich für den anderen Fall nicht weiter (also den Fall, dass $m$ und $n$ nicht teilerfremd sind).

Vielleicht könnte mir ja jemand dankenswerterweise einen Tipp geben.

Viele Dank und viele Grüße
Gregor

        
Bezug
Eulersche Phi-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 19:19 Mi 07.05.2008
Autor: felixf

Hallo!

> Gegeben sei die Eulersche [mm]\varphi[/mm]-Funktion sowie zwei
> natürliche Zahlen [mm]m,n\in\mathbb{N}[/mm]. Beweisen Sie:
>  [mm]\varphi(mn)\cdot\varphi (ggT(m,n))=\varphi (m)\cdot \varphi (m)\cdot ggT(m,n)[/mm]

Hinter dem Gleichheitszeichen soll eins der [mm] $\varphi(m)$ [/mm] wohl ein [mm] $\varphi(n)$ [/mm] sein, oder?

> Hallo zusammen,
>  
> bräuchte einen kleinen Tipp bei diesem Beweis. Für den
> Fall, dass [mm]m,n[/mm] teilerfremd sind, ist der Beweis einfach: In
> diesem Fall folgt aus der Multiplikativität der
> [mm]\varphi[/mm]-Funktion, dass
>  [mm]\varphi(mn)=\varphi(m)\cdot \varphi(n)[/mm] gilt. Außerdem ist
> [mm]\varphi (ggT(m,n)=\varphi (1)=1=ggt(m,n)[/mm].
>  
> Nur leider komme ich für den anderen Fall nicht weiter
> (also den Fall, dass [mm]m[/mm] und [mm]n[/mm] nicht teilerfremd sind).

Ich wuerd's so machen: schreibe $a$ und $b$ als Produkt von Primzahlpotenzen, etwa $a = [mm] \prod_{i=1}^k p_i^{e_i}$ [/mm] unf $b = [mm] \prod_{i=1}^k p_i^{f_i}$ [/mm] mit [mm] $e_i, f_i \ge [/mm] 0$.

Dann kannst du die Behauptung darauf zurueckfuehren, dass du es fuer $a = [mm] p_i^{e_i}$ [/mm] und $b = [mm] p_i^{f_i}$ [/mm] zeigst fuer festes $i$. Und fuer Primzahlpotenzen kannst du das relativ einfach machen; nimm einfach [mm] $e_i \le f_i$ [/mm] an, dann kannst du ggT etc. exakt hinschreiben.

LG Felix


Bezug
                
Bezug
Eulersche Phi-Funktion: Danksagung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:53 Do 08.05.2008
Autor: grenife

Hallo Felix!

erstmal wieder vielen Dank für Deinen Hinweis!
Habe die Lösung mit Hilfe des (mir zuvor unbekannten) Zusammenhangs:
[mm] $\varphi(p^k)=p^k\cdot (1-\frac{1}{p})$ [/mm] gelöst.

Vielen Dank und viele Grüße
Gregor

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de