www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Eulersche Zahl Abschätzung
Eulersche Zahl Abschätzung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Eulersche Zahl Abschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 Di 03.07.2012
Autor: eps

Ich suche einen Beweis dafür, dass
[mm] e>\bruch{n}{\wurzel[n]{n}} [/mm]
Kann mir da vielleicht jemand ein Buch vorschlagen, wo ich den Beweis finde?

Danke schonmal.

        
Bezug
Eulersche Zahl Abschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:53 Di 03.07.2012
Autor: fred97


> Ich suche einen Beweis dafür, dass
>  [mm]e>\bruch{n}{\wurzel[n]{n}}[/mm]

Wenn das für fast alle n gelten sollte, so ist das falsch.


Aus  [mm]e>\bruch{n}{\wurzel[n]{n}}[/mm]  folgt nämlich


[mm] \bruch{1}{\wurzel[n]{n}}
Für n [mm] \to \infty [/mm] ergibt sich 1 [mm] \le [/mm] 0.

FRED

>  Kann mir da vielleicht jemand ein Buch vorschlagen, wo ich
> den Beweis finde?
>  
> Danke schonmal.


Bezug
                
Bezug
Eulersche Zahl Abschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:19 Di 03.07.2012
Autor: eps

Ja du hast recht. Es hat sich ein Fehler eingeschlichen. Ich will zeigen, dass
[mm] e>\bruch{n}{\wurzel[n]{n!}} [/mm]

Bezug
                        
Bezug
Eulersche Zahl Abschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:42 Di 03.07.2012
Autor: fred97


> Ja du hast recht. Es hat sich ein Fehler eingeschlichen.
> Ich will zeigen, dass
> [mm]e>\bruch{n}{\wurzel[n]{n!}}[/mm]  


[mm]e>\bruch{n}{\wurzel[n]{n!}}[/mm]  [mm] \gdw e^n> \bruch{n^n}{n!} [/mm]

Hilft das ?

FRED


Bezug
                                
Bezug
Eulersche Zahl Abschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 Di 03.07.2012
Autor: eps

nein, das hilft mir leider auch nicht weiter. gibt es denn kein buch, wo ich den beweis finde?
Vielleicht kann ich verwenden, dass [mm] e=\summe_{k=0}^{infty} \bruch{1}{k!} [/mm] ist?

Bezug
                                        
Bezug
Eulersche Zahl Abschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 Di 03.07.2012
Autor: Diophant

Hallo,

[mm] e^n>\left(1+\bruch{1}{n}\right)^n [/mm]

Damit sollte es klappen. :-)


Gruß, Diophant


Bezug
                                                
Bezug
Eulersche Zahl Abschätzung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:41 Di 03.07.2012
Autor: eps

also so ganz komm ich immer noch nicht drauf.
wir haben
[mm] e^n>(1+\bruch{1}{n})^n=(\bruch{n+1}{n})^n>(\bruch{n}{n})^n>(\bruch{n}{n!})^n [/mm]

aber ich will ja
[mm] e^n>\bruch{n^n}{n!} [/mm]

Vielleicht kann mir da nochmal jemand weiterhelfen?


Stimmt das überhaupt, dass [mm] e^n>(1+\bruch{1}{n})^n? [/mm] wir wissen, dass [mm] e=\limes_{n\rightarrow\infty}(1+\bruch{1}{n}). [/mm] Folgt das daraus? Irgendwie steh ich grad aufm schlauch, denn der Limes geht für n gegen [mm] \infty [/mm] ja gegen 1 und [mm] (1+\bruch{1}{n}) [/mm] ist größergleich 1....

Bezug
                                                        
Bezug
Eulersche Zahl Abschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 Di 03.07.2012
Autor: fred97


> also so ganz komm ich immer noch nicht drauf.
>  wir haben
> [mm]e^n>(1+\bruch{1}{n})^n=(\bruch{n+1}{n})^n>(\bruch{n}{n})^n>(\bruch{n}{n!})^n[/mm]
>  
> aber ich will ja
> [mm]e^n>\bruch{n^n}{n!}[/mm]
>  
> Vielleicht kann mir da nochmal jemand weiterhelfen?
>  
> Stimmt das überhaupt, dass [mm]e^n>(1+\bruch{1}{n})^n?[/mm]




> wir
> wissen, dass [mm]e=\limes_{n\rightarrow\infty}(1+\bruch{1}{n}).[/mm]
> Folgt das daraus? Irgendwie steh ich grad aufm schlauch,
> denn der Limes geht für n gegen [mm]\infty[/mm] ja gegen 1 und
> [mm](1+\bruch{1}{n})[/mm] ist größergleich 1....

Es ist [mm] e^x=1+\bruch{x}{1!}+\bruch{x^2}{2!}+.....+\bruch{x^n}{n!}+\bruch{x^{n+1}}{(n+1)!}+ [/mm] ....

Für x>0 ist also

[mm] e^x>\bruch{x^n}{n!} [/mm]

Setze jetzt x=n.

FRED


Bezug
                                                                
Bezug
Eulersche Zahl Abschätzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:04 Di 03.07.2012
Autor: eps

dankeschön! das hilft mir wirklich weiter!

Bezug
                                                        
Bezug
Eulersche Zahl Abschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:15 Mi 04.07.2012
Autor: fred97


> also so ganz komm ich immer noch nicht drauf.
>  wir haben
> [mm]e^n>(1+\bruch{1}{n})^n=(\bruch{n+1}{n})^n>(\bruch{n}{n})^n>(\bruch{n}{n!})^n[/mm]
>  
> aber ich will ja
> [mm]e^n>\bruch{n^n}{n!}[/mm]
>  
> Vielleicht kann mir da nochmal jemand weiterhelfen?
>  
> Stimmt das überhaupt, dass [mm]e^n>(1+\bruch{1}{n})^n?[/mm]


Ja , das stimmt, denn [mm] (1+\bruch{1}{n})^n [/mm] <e für alle n.



>  wir
> wissen, dass [mm]e=\limes_{n\rightarrow\infty}(1+\bruch{1}{n}).[/mm]

Nein, es ist  [mm]e=\limes_{n\rightarrow\infty}(1+\bruch{1}{n})^n.[/mm]

FRED

> Folgt das daraus? Irgendwie steh ich grad aufm schlauch,
> denn der Limes geht für n gegen [mm]\infty[/mm] ja gegen 1 und
> [mm](1+\bruch{1}{n})[/mm] ist größergleich 1....


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de