www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Existenz Grenzwert
Existenz Grenzwert < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Existenz Grenzwert: Idee
Status: (Frage) beantwortet Status 
Datum: 22:46 Mo 20.10.2014
Autor: Karl87

Hallo,

habe mal eine Frage bzgl der Bildung des Grenzwertes einer Sekantensteigung und dessen Fixierung durch den Differenzenquotienten.

Habe mir (leider) bisher nie Gedanken darüber gemacht und die Existenz des Grenzwertes hingenommen.

Warum ist der Grenzwert [mm] \limes_{x\rightarrow\ x_{0}} \bruch{f(x)-f(x_{0})}{x-x_{0}} [/mm] wohldefiniert?

Da ja eigentlich sowohl Nenner als auch Zähler für [mm] x\rightarrow\ x_{0} [/mm] gegen 0 gehen. Wieso hat der Quotient einen Grenzwert?

Würde mich über eine Antwort freuen.

Viele Grüße
Karl

        
Bezug
Existenz Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 22:58 Mo 20.10.2014
Autor: abakus


> Hallo,

>

> habe mal eine Frage bzgl der Bildung des Grenzwertes einer
> Sekantensteigung und dessen Fixierung durch den
> Differenzenquotienten.

>

> Habe mir (leider) bisher nie Gedanken darüber gemacht und
> die Existenz des Grenzwertes hingenommen.

>

> Warum ist der Grenzwert [mm]\limes_{x\rightarrow\ x_{0}} \bruch{f(x)-f(x_{0})}{x-x_{0}}[/mm]
> wohldefiniert?

>

> Da ja eigentlich sowohl Nenner als auch Zähler für
> [mm]x\rightarrow\ x_{0}[/mm] gegen 0 gehen. Wieso hat der Quotient
> einen Grenzwert?

Hallo,
den hat er gar nicht immer. Das hängt ganz von der konkret verwendeten Funktion und von der Stelle ab. Die Wurzelfunktion liefert z.B. bei Annährung an die Stelle 0 den uneigentlichen Grenzwert +unendlich.
Die Betragsfunktion f(x)=|x| liefert an der Stelle x=0 wahlweise -1 oder 1, je nach Annäherungsrichtung.
Gruß Abakus
>

> Würde mich über eine Antwort freuen.

>

> Viele Grüße
> Karl

Bezug
                
Bezug
Existenz Grenzwert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:04 Mo 20.10.2014
Autor: Karl87

Okay, verstehe ich. Aber bei der Annäherung von [mm] x\rightarrow\ x_{0} [/mm] müsste doch Zähler und Nenner 0 werden und somit müsste doch als Ergebnis der unbestimmte Ausdruck [mm] \bruch{0}{0} [/mm] resultieren. Weißt du was ich meine?

Bezug
                        
Bezug
Existenz Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 23:35 Mo 20.10.2014
Autor: Fulla

Hallo Karl!

> Okay, verstehe ich. Aber bei der Annäherung von
> [mm]x\rightarrow\ x_{0}[/mm] müsste doch Zähler und Nenner 0
> werden und somit müsste doch als Ergebnis der unbestimmte
> Ausdruck [mm]\bruch{0}{0}[/mm] resultieren. Weißt du was ich meine?

Weil die Division durch Null und erst recht der Ausdruck [mm]\frac 00[/mm] nicht definiert ist, muss man sich mit einem Grenzwert behelfen. (Unterscheide hier zwischen "ich setze für [mm]x[/mm] einfach [mm]x_0[/mm] ein" und "ich bilde den Grenzwert für [mm]x\to x_0[/mm]!)

Der Ausdruck [mm]\frac 00[/mm] kann so ziemlich alles bedeuten. Aber je nach Funktion und Stelle, die du untersuchst, kann der Grenzwert verschiedene Werte annehmen.

Du darfst hier nicht Zähler und Nenner getrennt betrachtetn. Bei diesen Differentialquotienten läuft es meistens darauf hinaus, dass man den Nenner kürzen kann und so sehr einfach den Grenzwert bilden kann.

Bei deiner ursprünglichen Frage ging es um die Wohldefiniertheit des Grenzwertes und wie abakus schon schrieb, muss diese nicht unbedingt immer gegeben sein.


Lieben Gruß,
Fulla

Bezug
                        
Bezug
Existenz Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 02:49 Di 21.10.2014
Autor: DieAcht

Hallo Karl,


> Aber bei der Annäherung von
> [mm]x\rightarrow\ x_{0}[/mm] müsste doch Zähler und Nenner 0
> werden und somit müsste doch als Ergebnis der unbestimmte
> Ausdruck [mm]\bruch{0}{0}[/mm] resultieren. Weißt du was ich meine?

Du willst die Grenzwertsätze ohne Voraussetzung benutzen!
Es ist nur dann

[mm] \lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}=\frac{\lim_{x\to x_0}(f(x)-f(x_0))}{\lim_{x\to x_0}(x-x_0)}, [/mm]

falls folgendes gelten würde(!):

      [mm] \lim_{x\to x_0}(f(x)-f(x_0))=a\in\IR\wedge\lim_{x\to x_0}(x-x_0)=b\in\IR\setminus\{0\}. [/mm]

Kann das gut gehen?


Gruß
DieAcht

Bezug
        
Bezug
Existenz Grenzwert: Antwort
Status: (Antwort) fertig Status 
Datum: 07:45 Di 21.10.2014
Autor: fred97


> Hallo,
>  
> habe mal eine Frage bzgl der Bildung des Grenzwertes einer
> Sekantensteigung und dessen Fixierung durch den
> Differenzenquotienten.
>  

Ergänzend:


> Habe mir (leider) bisher nie Gedanken darüber gemacht


> und
> die Existenz des Grenzwertes hingenommen.

Das ist nicht gut !!


>
> Warum ist der Grenzwert [mm]\limes_{x\rightarrow\ x_{0}} \bruch{f(x)-f(x_{0})}{x-x_{0}}[/mm]
> wohldefiniert?

Das ist er i.a. nicht !

Definition der Differenzierbarkeit:

Sei I ein Intervall und f:I [mm] \to \IR [/mm] eine Funktion und [mm] x_0 \in [/mm] I.

f heißt in [mm] x_0 [/mm] differenzierbar, wenn der Grenzwert

    [mm]\limes_{x\rightarrow\ x_{0}} \bruch{f(x)-f(x_{0})}{x-x_{0}}[/mm]

existiert.

FRED

>




> Da ja eigentlich sowohl Nenner als auch Zähler für
> [mm]x\rightarrow\ x_{0}[/mm] gegen 0 gehen. Wieso hat der Quotient
> einen Grenzwert?
>  
> Würde mich über eine Antwort freuen.
>  
> Viele Grüße
>  Karl


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de