www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Exp. Funktion mit 2 Variabeln
Exp. Funktion mit 2 Variabeln < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exp. Funktion mit 2 Variabeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 Sa 24.08.2013
Autor: mary1004

Aufgabe
fa(x) = [mm] \bruch{a}{2} (e^{\bruch{x}{a}} [/mm] + [mm] e^{\bruch{-x}{a}}) [/mm] D=R, a>0
a) Bestimmen Sie den Tiefpunkt in Abhängigkeit von a!

Hallo an alle! :)

Ich muss eine Hausarbeit am Schuljahresbeginn abgeben, und ich stoße auf eine Schwierigkeit in dieser Aufgabe.

Hier mein Ansatz:
Ich habe zunächst die Funktion abgeleitet:
fa(x) = [mm] \bruch{a}{2} (e^{\bruch{x}{a}} [/mm] + [mm] e^{\bruch{-x}{a}}) [/mm]
[mm] fa'(x)=\bruch{a*(e^{\bruch{x}{a}} + e^{\bruch{-x}{a}})}{2} [/mm]
[mm] fa'(x)=\bruch{a*(e^{\bruch{\bruch{x}{a}}{a}} + e^{\bruch{\bruch{x}{a}}{a}})}{2} [/mm]

Ich komme aber nicht weiter, weil ich nicht weiß, ob man fa'(a)=0 oder fa'(x)=0 setzen oder nicht. Ich habe versucht, nach a zu lösen aber da hat sich nichts Richtiges ergeben... Ich glaube, dass ich mich von den 2 Variabeln erschrecken...

Ich habe über 2 Stunden damit verbracht, zu versuchen, diese Frage zu lösen, aber ich komme nicht weiter. Es wäre sehr nett von euch, mir zu erklären, wie man nach den Nullstellen der Ableitung einer exp. Funktion mit 2 Variabeln auflöst :) Vielen Dank!

Verzeihung für die Fehler, aber ich lerne Deutsch als Fremdsprache und mein Mathe-Unterricht wird teilweise auf Deutsch erteilt. Ich hoffe, dass meine Fragen klar waren :)

        
Bezug
Exp. Funktion mit 2 Variabeln: Antwort
Status: (Antwort) fertig Status 
Datum: 17:01 Sa 24.08.2013
Autor: MathePower

Hallo mary1004,

> fa(x) = [mm]\bruch{a}{2} (e^{\bruch{x}{a}}[/mm] + [mm]e^{\bruch{-x}{a}})[/mm]
> D=R, a>0
>  a) Bestimmen Sie den Tiefpunkt in Abhängigkeit von a!
>  Hallo an alle! :)
>  
> Ich muss eine Hausarbeit am Schuljahresbeginn abgeben, und
> ich stoße auf eine Schwierigkeit in dieser Aufgabe.
>  
> Hier mein Ansatz:
>  Ich habe zunächst die Funktion abgeleitet:
>  fa(x) = [mm]\bruch{a}{2} (e^{\bruch{x}{a}}[/mm] +
> [mm]e^{\bruch{-x}{a}})[/mm]
> [mm]fa'(x)=\bruch{a*(e^{\bruch{x}{a}} + e^{\bruch{-x}{a}})}{2}[/mm]

>


Das ist nicht ganz richtig.

Es fehlt die innere Ableitung der Expnentialfunktionen.

  

> [mm]fa'(x)=\bruch{a*(e^{\bruch{\bruch{x}{a}}{a}} + e^{\bruch{\bruch{x}{a}}{a}})}{2}[/mm]
>  
> Ich komme aber nicht weiter, weil ich nicht weiß, ob man
> fa'(a)=0 oder fa'(x)=0 setzen oder nicht. Ich habe
> versucht, nach a zu lösen aber da hat sich nichts
> Richtiges ergeben... Ich glaube, dass ich mich von den 2
> Variabeln erschrecken...
>  


Es ist [mm]f_{a}'\left(x\right)=0[/mm] zu setzen.


> Ich habe über 2 Stunden damit verbracht, zu versuchen,
> diese Frage zu lösen, aber ich komme nicht weiter. Es
> wäre sehr nett von euch, mir zu erklären, wie man nach
> den Nullstellen der Ableitung einer exp. Funktion mit 2
> Variabeln auflöst :) Vielen Dank!
>  


Setze dazu [mm]z=e^{\bruch{x}{a}}[/mm].


> Verzeihung für die Fehler, aber ich lerne Deutsch als
> Fremdsprache und mein Mathe-Unterricht wird teilweise auf
> Deutsch erteilt. Ich hoffe, dass meine Fragen klar waren :)


Gruss
MathePower

Bezug
                
Bezug
Exp. Funktion mit 2 Variabeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:49 Sa 24.08.2013
Autor: mary1004

Vielen Dank für ihre Hilfe, aber mein Ergebnis sieht sehr komisch aus, und ich weiß nicht wie ich am Ende z in x umforme.

Soweit bin ich:
[mm] a\cdot{}(e^{\bruch{z}{a}} [/mm] + [mm] e^{\bruch{z}{a}}) [/mm] = 0
[mm] {\bruch{1}{2z}} [/mm] = [mm] a^3 [/mm]
z= [mm] {a^3}{1/2} [/mm]
z= [mm] 2a^3 [/mm]

Entschuldigung dafür, dass ich erst langsam verstehe.

Bezug
                        
Bezug
Exp. Funktion mit 2 Variabeln: Innere Ableitung
Status: (Antwort) fertig Status 
Datum: 17:55 Sa 24.08.2013
Autor: Infinit

Hallo mary,
die innere Ableitung der Exponentialfunktion fehlt immer noch, weswegen das Ergebnis nicht stimmt.
Viele Grüße,
Infinit

By the way: Deine Variable, nach der Du ableitest, ist x. Das a behandelst Du zunächst als Konstante bei der Ableitung.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de