www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Exp Gleichung - Lösungswege
Exp Gleichung - Lösungswege < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exp Gleichung - Lösungswege: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:19 Fr 28.07.2006
Autor: timbalord

Aufgabe
Lösen der Exponentialgleichungen mittels Exponentenvergleich lösen

Ich habe hier eine Aufgabe die ich normalerweise mittels Exponentenvergleich hätte lösen sollen.
Zufällig bin ich allerdings per Logarithmieren an das Problem herangegangen und bekomme ein anderes Ergebnis, als ich es mittels Exponentenvergleich bekomme. Wo mache ich den Fehler?

Aufgabe:
[mm] 9^{2x+2} [/mm] = 27

Exponentenvergleich:
[mm] 9^{2x+2} [/mm] = 27
[mm] 3^{2*(2x+2)} [/mm] = [mm] 3^3 [/mm]
4x+4 = 3
4x = -1
x = - [mm] \bruch{1}{4} [/mm]

Logarithmieren
[mm] 9^{2x+2} [/mm] = 27
(2x+2) * log 9 = log 27
2x+2 = [mm] \bruch{log 27}{log 9} [/mm]
x = [mm] \bruch{log 27}{2*log9} [/mm] -2
x = - 1 [mm] \bruch{1}{4} [/mm]

Ich hoffe, dass mir jemand zeigen kann, was ich hier falsch mache.
Danke im Voraus.


Gruß Dennis
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Exp Gleichung - Lösungswege: Antwort
Status: (Antwort) fertig Status 
Datum: 12:26 Fr 28.07.2006
Autor: Bastiane

Hallo!

> Aufgabe:
> [mm]9^{2x+2}[/mm] = 27
>  
> Exponentenvergleich:
>  [mm]9^{2x+2}[/mm] = 27
>  [mm]3^{2*(2x+2)}[/mm] = [mm]3^3[/mm]
>  4x+4 = 3
>  4x = -1
>  x = - [mm]\bruch{1}{4}[/mm]

[daumenhoch]
  

> Logarithmieren
>  [mm]9^{2x+2}[/mm] = 27
>  (2x+2) * log 9 = log 27
>  2x+2 = [mm]\bruch{log 27}{log 9}[/mm]
>  x = [mm]\bruch{log 27}{2*log9}[/mm]
> -2

hier oben liegt der Fehler! Du musst zuerst die 2 subtrahieren, bevor du durch 2 teilst. Dann erhältst du:

[mm] \bruch{\bruch{\log 27}{\log 9}-2}{2} [/mm]

Und dann kommst du auch wieder auf das Ergebnis von [mm] x=-\bruch{1}{4} [/mm]

Viele Grüße
Bastiane
[cap]




Bezug
        
Bezug
Exp Gleichung - Lösungswege: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:36 Fr 28.07.2006
Autor: timbalord

Ich beantworte mich gleich selbst, da ich einen wirklich dummen Fehler gemacht habe.

Der Fehler steckt in der Logarithmierung

[mm] 9^{2x+2} [/mm] = 27
(2x + 2) log 9 = log 27

Falsch ist
2x +2 = [mm] \bruch{log 27}{log 9} [/mm]

Richtig ist
2x * log 9 + 2 * log 9 = log 27 // Ausmultiplizieren vergessen

2x * log 9 = log 27 - 2 * log 9
x = [mm] \bruch{log 27 - 2 * log 9}{2 * log 9} [/mm]
x = - [mm] \bruch{1}{4} [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de