www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Sonstiges" - Exponentengleichung
Exponentengleichung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Exponentengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:10 Mi 27.10.2010
Autor: ollikevin

Aufgabe
[mm] 18^{-x} [/mm] * [mm] 2436^{x}=45^{x+1} [/mm]

eigentlich eine ähnliche aufgabe, jeoch geht es hier um komplett unterschiedliche basen und unterschiedliche exponenten. außerdem sogar ein negativer exponent.

da alles ungleich ist, kann man ja nicht mehr einfach zusammenfassen. muss ich die basen gleichstellen, damit ich die exponenten zusammenfassen kann oder gibt es da einen einfachen weg?

bin irgendwie total verwirrt nach ca 12 stunden rechnen xD

        
Bezug
Exponentengleichung: Potenzgesetze
Status: (Antwort) fertig Status 
Datum: 15:17 Mi 27.10.2010
Autor: Roadrunner

Hallo ollikevin!


Forme zunächst gemäß MBPotenzgesetzen um:


[mm]18^{-x} * 2436^x \ = \ 45^{x+1}[/mm]

[mm]\bruch{1}{18^x} * 2436^x \ = \ 45^x*45^1[/mm]

Teile nun die Gleichung durch [mm]45^x[/mm] und fasse anschließend links zusammen.


Gruß vom
Roadrunner



Bezug
                
Bezug
Exponentengleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 Mi 27.10.2010
Autor: ollikevin

Aufgabe
x= [mm] \bruch{ln45}{ln2435 - ln18 - ln45} [/mm]

oben steht nun ein Teilergebnis, auf das ich kommen soll

ich kann mit deinem ansatz das ergebnis ausrechnen, jedoch komm ich nicht auf das teilergebnis.



Bezug
                        
Bezug
Exponentengleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Mi 27.10.2010
Autor: fencheltee


> x= [mm]\bruch{ln45}{ln2435 - ln18 - ln45}[/mm]
>  oben steht nun ein
> Teilergebnis, auf das ich kommen soll
>  
> ich kann mit deinem ansatz das ergebnis ausrechnen, jedoch
> komm ich nicht auf das teilergebnis.

dir wurde der ansatz doch genannt
es war doch
[mm] \frac{1}{18^x}*2435^x=45^x*45 [/mm]
nun durch [mm] 45^x [/mm] teilen
[mm] \gdw \frac{1}{(18*45)^x}*2435^x=45 [/mm]
[mm] \gdw [/mm] nun ausklammern, da gilt:
[mm] \frac{a^x}{b^x}=(\frac{a}{b})^x [/mm]

>  
>  

gruß tee

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de